精英家教网 > 高中数学 > 题目详情
6.设实数x,y满足约束条件$\left\{\begin{array}{l}x-2y-5≤0\\ x+y-4≤0\\ 3x+y-10≥0\end{array}\right.$,则z=x2+y2的最小值为(  )
A.$\sqrt{10}$B.10C.8D.5

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,即可得到结论.

解答 解:实数x,y满足约束条件$\left\{\begin{array}{l}x-2y-5≤0\\ x+y-4≤0\\ 3x+y-10≥0\end{array}\right.$
的可行域为:z=x2+y2的几何意义是
可行域的点到坐标原点距离的平方,
显然A到原点距离的平方最小,
由$\left\{\begin{array}{l}{x+y-4=0}\\{3x+y-10=0}\end{array}\right.$,可得A(3,1),
则z=x2+y2的最小值为:10.
故选:B.

点评 本题主要考查线性规划的应用,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知幂函数y=f(x)的图象过点(2,$\sqrt{2}$),则下列说法正确的是(  )
A.f(x)是奇函数,则在(0,+∞)上是增函数
B.f(x)是偶函数,则在(0,+∞)上是减函数
C.f(x)既不是奇函数也不是偶函数,且在(0,+∞)上是增函数
D.f(x)既不是奇函数也不是偶函数,且在(0,+∞)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.阅读下边的程序框图,运行相应的程序,则输出v的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD为等边三角形,$AB=AD=\frac{1}{2}CD$,AB⊥AD,AB∥CD,点M是PC的中点.
(I)求证:MB∥平面PAD;
(II)求二面角P-BC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$tanθ=\frac{1}{2}$,则$tan({\frac{π}{4}-2θ})$=(  )
A.7B.-7C.$\frac{1}{7}$D.$-\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.a>b的一个充分不必要条件是(  )
A.a=1,b=0B.$\frac{1}{a}$<$\frac{1}{b}$C.a2>b2D.a3>b3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,若BC=2,A=120°,则$\overrightarrow{AB}$•$\overrightarrow{CA}$的最大值为(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{4}{3}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.圆x2+y2-6x-2y+3=0的圆心到直线x+ay-1=0的距离为1,则a=(  )
A.$-\frac{4}{3}$B.$-\frac{3}{4}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知${(2{x^3}-\frac{1}{x})^n}$的展开式的常数项是第7项,则正整数n的值为(  )
A.6B.7C.8D.9

查看答案和解析>>

同步练习册答案