精英家教网 > 高中数学 > 题目详情

【题目】已知函数).

(Ⅰ)若在点处的切线与轴平行,且在区间上存在最大值,求实数的取值范围;

(Ⅱ)当时,求不等式恒成立时的最小整数值.

【答案】(1)(2)的最小整数值为.

【解析】

试题(1)由导数几何意义得,解得.再根据的正负讨论导函数符号变化规律,确定单调性,进而确定最值取法(2)根据变量分类法得最大值,利用导数研究函数最大值,其中,因此化简,最后根据基本不等式求得最大值,再根据的最小整数值为.

试题解析:解:(Ⅰ) .

在点处的切线与轴平行,∴,∴.

因此

时,在区间上为正,在区间上为负,因此在区间上为增函数,在区间上为减函数,即函数处取得唯一的极大值,即为最大值;

时,上为减函数,在为增函数,即函数有最小值,无最大值.

因此实数的取值范围是.

(Ⅱ)当时,设在区间上为减函数,

因此存在唯一实数,使

由此得到

此时在区间上为增函数,在区间上为减函数,

由单调性知

,故

因此恒成立时,即的最小整数值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知aR,命题p:“x[1,2],x2﹣a≥0”,命题q:“xR,x2+2ax+2﹣a=0”.

(1)若命题p为真命题,求实数a的取值范围;

(2)若命题“pq”为真命题,命题“pq”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右顶点分别为,且左、右焦点与短轴的一个端点是等边三角形的三个顶点,点在椭圆上,过点的直线交椭圆轴上方的点,交直线于点.直线与椭圆的另一交点为,直线与直线交于点.

1)求椭圆的标准方程;

2)若,试求直线的方程;

3)如果,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形中(图1),的中点, 将(图1)沿直线折起,使二面角(如图2).

1 2

(1)求证:平面

(2)求异面直线所成角的余弦值;

(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放40年来,体育产业蓬勃发展反映了健康中国理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图表示体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).

(Ⅰ)从2007年至2016年这十年中随机选出一年,求该年体育产业年增加值比前一年多亿元以上的概率;

(Ⅱ)从2007年至2011年这五年中随机选出两年,求至少有一年体育产业年增长率超过25%的概率;

(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为:为参数,),以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)当时,写出直线的普通方程和曲线的直角坐标方程;

2)若点,设曲线与直线交于点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一颗骰子先后抛掷2次,观察向上的点数,求:

1)两数中至少有一个奇数的概率;

2)以第一次向上的点数为横坐标x,第二次向上的点数为纵坐标y的点(xy)在圆x2+y215的外部或圆上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆 的左、右焦点,点是椭圆上一点,且.

(1)求椭圆的方程;

(2)设直线与椭圆相交于两点,若,其中为坐标原点,判断到直线的距离是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)贵广高速铁路自贵阳北站起,经黔南州、黔东南、广西桂林、贺州、广东肇庆、佛山终至广州南站. 其中广东省内有怀集站、广宁站、肇庆东站、三水南站、佛山西站、广州南站共6个站. 记者对广东省内的6个车站随机抽取3个进行车站服务满意度调查.

1)求抽取的车站中含有佛山市内车站(包括三水南站和佛山西站)的概率;

2)设抽取的车站中含有肇庆市内车站(包括怀集站、广宁站、肇庆东站)个数为X,求X的分布列及其均值(即数学期望).

查看答案和解析>>

同步练习册答案