精英家教网 > 高中数学 > 题目详情

【题目】如图1,有一边长为2的正方形ABCDE是边AD的中点,将沿着直线BE折起至位置(如图2),此时恰好,点在底面上的射影为O.

1)求证:

2)求直线与平面BCDE所成角的正弦值.

【答案】1)证明见解析(2

【解析】

1)利用直线与平面垂直的判定定理证明,再根据直线与平面垂直的性质可得

2)依题意得就是直线与面BCDE所成角,延长EOBCH,连接,在直角三角形中得,在直角三角形中得,在直角三角形中得.

1)证明:∵

又∵

.

2)∵点在底面上的射影为O.

BCDE

就是直线与面BCDE所成角.

延长EOBCH,连接

如图:

EAD中点

HBC中点

由(1)知

所以直线与平面BCDE所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数为偶函数,求的值;

(2)若,求函数的单调递增区间;

(3)当时,若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知(a>0)是定义在R上的偶函数,

1)求实数a的值;

2)判断并证明函数的单调性;

3)若关于的不等式的解集为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中,,P为线段AC上任意一点,则的范围是( )

A. [1,4] B. [0,4] C. [-2,4] D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工艺公司要对某种工艺品深加工,已知每个工艺品进价为20元,每个的加工费为n元,销售单价为x.根据市场调查,须有,同时日销售量m(单位:个)与成正比.当每个工艺品的销售单价为29元时,日销售量为1000.

1)写出日销售利润y(单位:元)与x的函数关系式;

2)当每个工艺品的加工费用为5元时,要使该公司的日销售利润为100万元,试确定销售单价x的值.(提示:函数的图象在上有且只有一个公共点)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电视传媒公司为了解某地区观众对某类休育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.

1)根据已知条件完成下面的列联表,并据此资料判断是否有的把握认为“体育迷”与性别有关?

非体育迷

体育迷

合计

合计

2)将日均收看读体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.

.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且其中一个焦点的坐标为.

(1)求椭圆的方程;

(2)过椭圆右焦点的直线与椭圆交于两点,在轴上是否存在点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且.若对任意的,都有.

1)判断函数的单调性,并说明理由;

2)若,求实数的取值范围;.

3)若不等式对任意都恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地空气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒1个单位的去污剂,空气中释放的浓度y(单位:毫克/立方米)随着时间x(单位:天)变化的函数关系式近似为,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和.由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.

(Ⅰ)若一次喷洒4个单位的去污剂,则去污时间可达几天?

(Ⅱ)若第一次喷洒2个单位的去污剂,6天后再喷洒 个单位的去污剂,要使接下来的4天中能够持续有效去污,试求的最小值.

查看答案和解析>>

同步练习册答案