【题目】如图,三棱柱中,侧面为菱形,.
(1)证明:;
(2)若,,,求二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】△ABC的角A、B、C的对边分别为a、b、c,=(2b-c,a),=(cosA,-cosC),且⊥.
(Ⅰ)求角A的大小;
(Ⅱ)当y=2sin2B+sin(2B+)取最大值时,求角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设经过点的直线与抛物线相交于、两点,经过点的直线与抛物线相切于点.
(1)当时,求的取值范围;
(2)问是否存在直线,使得成立,若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,已知,顶点P在平面ABC上的射影为的外接圆圆心.
(1)证明:平面平面ABC;
(2)若点M在棱PA上,,且二面角P-BC-M的余弦值为,试求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,A、B为椭圆C:短轴的上、下顶点,P为直线l:y=2上一动点,连接PA并延长交椭圆于点M,连接PB交椭圆于点N,已知直线MA,MB的斜率之积恒为.
(1)求椭圆C的标准方程;
(2)若直线MN与x轴平行,求直线MN的方程;
(3)求四边形AMBN面积的最大值,并求对应的点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某印刷厂为了研究单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
印刷册数(千册) | |||||
单册成本(元) |
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:,方程乙:.
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到);
印刷册数(千册) | ||||||
单册成本(元) | ||||||
模型甲 | 估计值 | |||||
残差 | ||||||
模型乙 | 估计值 | |||||
残差 |
②分别计算模型甲与模型乙的残差平方和,并通过比较,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为千册,若印刷厂以每册元的价格将书籍出售给订货商,求印刷厂二次印刷千册获得的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国改革开放以来经济发展迅猛,某一线城市的城镇居民2012~2018年人均可支配月收入散点图如下(年份均用末位数字减1表示).
(1)由散点图可知,人均可支配月收入y(万元)与年份x之间具有较强的线性相关关系,试求y关于x的回归方程(系数精确到0.001),依此相关关系预测2019年该城市人均可支配月收入;
(2)在2014~2018年的五个年份中随机抽取两个数据作样本分析,求所取的两个数据中,人均可支配月收入恰好有一个超过1万元的概率.
注:,,,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com