精英家教网 > 高中数学 > 题目详情

【题目】ABR中两个子集,对于xR,定义:

①若AB.则对任意xRm1-n=______

②若对任意xRm+n=1,则AB的关系为______

【答案】0 A=RB

【解析】

①由AB.分xAxA两种情况讨论; ②对任意xRm+n=1,则mn的值一个为0,另一个为1,分类讨论即可得出AB的关系.

解:①∵AB.则xA时,m=0m1-n=0

xA时,必有xB,∴m=n=1m1-n=0

综上可得:m1-n=0

②对任意xRm+n=1,则mn的值一个为0,另一个为1

xA时,必有xB,或xB时,必有xA

AB的关系为A=RB

故答案为:0A=RB

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,矩形和等边三角形中, ,平面平面

(1)在上找一点,使,并说明理由;

(2)在(1)的条件下,求平面与平面所成锐二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了人进行分析,得到如下列联表(单位:人).

经常使用

偶尔使用或不使用

合计

岁及以下

岁以上

合计

1)根据以上数据,能否在犯错误的概率不超过的前提下认为市使用共享单车的情况与年龄有关;

2)(i)现从所选取的岁以上的网友中,采用分层抽样的方法选取人,再从这人中随机选出人赠送优惠券,求选出的人中至少有人经常使用共享单车的概率;

ii)将频率视为概率,从市所有参与调查的网友中随机选取人赠送礼品,记其中经常使用共享单车的人数为,求的数学期望和方差.

参考公式:,其中.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数有两个零点,求的取值范围;

(2)证明:当时,关于的不等式上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)当=-1时,求的单调区间及值域;

(2)若在()上为增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,斜率为的直线交抛物线两点,当直线过点时,以为直径的圆与直线相切.

(1)求抛物线的方程;

(2)与平行的直线交抛物线于两点,若平行线之间的距离为,且的面积是面积的倍,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人在塔的正东方向沿着南偏西60°的方向前进40 m以后,望见塔在东北方向上,若沿途测得塔的最大仰角为30°,则塔高为________________m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意,给出下列命题:

①“”是“”的充要条件;

②“是无理数”是“是无理数”的充要条件;

③“”是“”的必要条件,

④“”是“”的充分条件.

其中真命题的个数为().

A.1

B.2

C.3

D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,且的极值点.

(Ⅰ) 的极大值点,求的单调区间(用表示);

(Ⅱ)恰有1解,求实数的取值范围.

查看答案和解析>>

同步练习册答案