精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论函数的单调性;

(2)设,当时,对任意,存在,使,求实数的取值范围.

【答案】(1)见解析.

(2).

【解析】分析:(1)先求一阶导函数的根,求解的解集写出单调区间。

(2)时,求出的最小值,存在,使的最小值,

再分离变量构建函数,解

详解:(1)的定义域为

,得.

,则,由,由

函数上单调递减,在上单调递增.

,则,由

函数上单调递减,在上单调递增.

,则,可得

此时函数上单调递增.

时,则,由

函数上单调递减,在上单调递增.

(2)当时,由(1)得函数上单调递减,

上单调递增,

从而上的最小值为.

对任意,存在,使

即存在函数值不超过在区间上的最小值.

.

,则当时,.

,当,显然有

在区间上单调递减,得

从而的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知

(1)若上恒成立,求实数的取值范围;

(2)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两动圆),把它们的公共点的轨迹记为曲线,若曲线轴的正半轴的交点为,且曲线上的相异两点满足:.

1)求曲线的轨迹方程;

2)证明直线恒经过一定点,并求此定点的坐标;

3)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点 ,则下面说法正确的是( )

A. B. C. D. 有极小值点,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记不等式组 ,表示的平面区域为 .下面给出的四个命题: 其中真命题的是:

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象过原点,且在原点处的切线与直线垂直.为自然对数的底数).

1)讨论的单调性;

2)若对任意的,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若是定义域上的增函数,求的取值范围;

2)设分别为的极大值和极小值,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.现有抛物线,如图一平行于轴的光线射向抛物线,经两次反射后沿平行轴方向射出,若两平行光线间的最小距离为4,则该抛物线的方程为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和的直角坐标方程;

2)已知曲线的极坐标方程为,点是曲线的交点,点是曲线的交点,均异于原点,且,求实数的值.

查看答案和解析>>

同步练习册答案