精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆)的左、右焦点分别为,设点,在中, ,周长为.

1)求椭圆的方程;

2)设不经过点的直线与椭圆相交于两点,若直线的斜率之和为,求证:直线过定点,并求出该定点的坐标;

3)记第(2)问所求的定点为,点为椭圆上的一个动点,试根据面积的不同取值范围,讨论存在的个数,并说明理由.

【答案】(1);(2)过定点;(3)见解析.

【解析】试题分析:(1)由题意布列关于的方程组,从而得到椭圆方程;(2) 设直线方程: ,联立方程可得: ,利用根与系数的关系及,得到过定点.3设直线与椭圆相切, ,两切线到的距离分别为,根据面积的不同取值范围,讨论存在的个数.

试题解析:

1得: ,所以………

周长为所以………

①②方程组,得

所以椭圆方程为

2设直线方程: ,交点

依题: 即:

过定点.

3

设直线与椭圆相切,

得两切线到的距离分别为

时, 个数为0

时, 个数为1

时, 个数为2

时, 个数为3

时, 个数为4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)已知动圆过定点且与轴截得的弦的长为

)求动圆圆心的轨迹的方程;

)已知点,动直线和坐标轴不垂直,且与轨迹相交于两点,试问:在轴上是否存在一定点,使直线过点,且使得直线,的斜率依次成等差数列?若存在,请求出定点的坐标;否则,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪80元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成6元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表:

甲公司送餐员送餐单数频数表

送餐单数

38

39

40

41

42

天数

10

15

10

10

5

乙公司送餐员送餐单数频数表

送餐单数

38

39

40

41

42

天数

5

10

10

20

5

1)现从甲公司记录的50天中随机抽取3天,求这3天送餐单数都不小于40的概率;

2)若将频率视为概率,回答下列两个问题:

①记乙公司送餐员日工资为(单位:元),求的分布列和数学期望;

②小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是边长为的正方形,平面与平面所成角为

Ⅰ)求证:平面

Ⅱ)求二面角的余弦值.

Ⅲ)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数

(Ⅰ)求不等式的解集;

(Ⅱ)已知函数的最小值为,若实数,求

最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东西两部各5个城市,得到观看该节目的人数(单位:千人)如下茎叶图所示,其中一个数字被污损.

(I)求东部观众平均人数超过西部观众平均人数的概率.

(II)节目的播出极大激发了观众随机统计了4位观众的周均学习成语知识的的时间y (单位:小时)与年龄x(单位:岁),并制作了对照表(如下表所示)

由表中数据分析,xy呈线性相关关系,试求线性回归方程,并预测年龄为60岁观众周均学习成语知识的时间.

参考数据:线性回归方程中的最小二乘估计分别是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东西两部各5个城市,得到观看该节目的人数(单位:千人)如下茎叶图所示,其中一个数字被污损.

(I)求东部观众平均人数超过西部观众平均人数的概率.

(II)节目的播出极大激发了观众随机统计了4位观众的周均学习成语知识的的时间y (单位:小时)与年龄x(单位:岁),并制作了对照表(如下表所示)

由表中数据分析,xy呈线性相关关系,试求线性回归方程,并预测年龄为60岁观众周均学习成语知识的时间.

参考数据:线性回归方程中的最小二乘估计分别是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),将曲线经过伸缩变换后得到曲线.在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;

2)已知点是曲线上的任意一点,求点到直线的距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

处取极值在点处的切线方程

)当有唯一的零点求证

查看答案和解析>>

同步练习册答案