精英家教网 > 高中数学 > 题目详情
11.如图,长方体ABCD-A1B1C1D1中,AB=BC=$\frac{1}{2}A{A}_{1}$=a,E是AA1中点;
(Ⅰ)证明:A1B1∥平面CDE;
(Ⅱ) 证明:D1E⊥平面CDE;
(Ⅲ)求三棱锥D1-CDE的体积.

分析 (Ⅰ)证明A1B1∥CD,即可证明:A1B1∥平面CDE;
(Ⅱ)证明:D1E⊥DE,CD⊥D1E,CD∩DE=D,即可证明D1E⊥平面CDE;
(Ⅲ)三棱锥D1-CDE的体积=$\frac{1}{3}•{D}_{1}E•\frac{1}{2}CD•ED$,即可求三棱锥D1-CDE的体积.

解答 (Ⅰ)证明:∵ABCD-A1B1C1D1是长方体,
∴A1B1∥CD,
∵A1B1?平面CDE,CD?平面CDE,
∴A1B1∥平面CDE;
(Ⅱ)证明:∵AB=BC=$\frac{1}{2}A{A}_{1}$=a,E是AA1中点,
∴D1E=DE=$\sqrt{2}$a,
△DD1E中,D1E2+DE2=DD12
∴∠D1ED=90°,
∴D1E⊥DE,
∵CD⊥D1E,CD∩DE=D
∴D1E⊥平面CDE;
(Ⅲ)解:由(Ⅱ)D1E⊥平面CDE,可得D1E是三棱锥D1-CDE的高,
∴三棱锥D1-CDE的体积=$\frac{1}{3}•{D}_{1}E•\frac{1}{2}CD•ED$=$\frac{1}{3}•\sqrt{2}a•\frac{1}{2}•a•\sqrt{2}a$=$\frac{1}{3}{a}^{3}$.

点评 本题考查线面平行、垂直的判定,考查三棱锥D1-CDE的体积,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知:log310=a,log625=b,求log445.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\sqrt{{x}^{2}-2x-3}$的定义域为F,g(x)=$\sqrt{\frac{x+1}{x-3}}$的定义域为G,那么集合F,G的关系是(  )
A.F=GB.F⊆GC.G⊆FD.F∪G=G

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,图中方格的长度为1,则该几何体的外接球的体积为(  )
A.$\frac{8}{3}π$B.C.$\frac{32}{3}π$D.$\frac{16}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.△ABC中,中线AD、BE交于点G,FG∥AC,求$\frac{DF}{BD}$,$\frac{DF}{BC}$,$\frac{GF}{EC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图已知:AB是⊙O的直径,C是半圆上的一点,CD⊥AB于D,⊙N与⊙O内切且与AB,CD分别切于E,F,求证:AC=AE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设锐角三角形ABC的三内角为A,B,C所对的边分别为a,b,c,函数f(x)=cosxsin(x+$\frac{π}{6}$)-cos2x.
(Ⅰ)求f(A)的取值范围;
(Ⅱ)若f(A)=$\frac{1}{4}$,△ABC的面积为$\frac{\sqrt{3}}{4}$,求$\overrightarrow{BA}$•$\overrightarrow{BC}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.正三棱锥P-ABC的侧面积是底面积的2倍,它的高PO=3,求此正三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{3}$x3+f′(1)x2-x-1,x∈R,其中f′(x)为f(x)的导函数
(Ⅰ)若函数f(x)在区间(-a,1+a)上存在极小值点,求实数a的取值范围;
(Ⅱ)设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),若g(t)≥b+t,对任意t∈[-3,-2]恒成立,求实数b的取值范围.

查看答案和解析>>

同步练习册答案