精英家教网 > 高中数学 > 题目详情
如图椭圆 (a>b>0)的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上.
(1)求椭圆的离心率;
(2)若平行四边形OCED的面积为, 求椭圆方程.
)(1)e =. (2)故椭圆方程为
(1) ∵焦点为F(c, 0), AB斜率为, 故CD方程为y=(x-c). 于椭圆联立后消去y得2x2-2cxb2="0." ∵CD的中点为G(), 点E(c, -)在椭圆上, ∴将E(c, -)代入椭圆方程并整理得2c2=a2, ∴e =.
(2)由(Ⅰ)知CD的方程为y=(x-c),  b="c," a=c.
与椭圆联立消去y得2x2-2cx-c2=0.
∵平行四边形OCED的面积为
S=c|yC-yD|=c=c,
∴c=, a="2," b=. 故椭圆方程为 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的左、右焦点分别为,其中也是抛物线的焦点,在第一象限的交点,且
(1)求椭圆的方程;
(2)已知菱形的顶点在椭圆上,顶点在直线上,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设向量,过定点,以方向向量的直线与经过点,以向量为方向向量的直线相交于点P,其中
(1)求点P的轨迹C的方程;
(2)设过的直线与C交于两个不同点M、N,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆上的动点,点Q在NP上,点G在MP上,且满足.
(I)求点G的轨迹C的方程;
(II)过点(2,0)作直线,与曲线C交于A、B两点,O是坐标原点,设 是否存在这样的直线,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线的方程;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的中心在原点,焦点在x轴上,焦距为2,且经过点A
(1)求满足条件的椭圆方程;
(2)求该椭圆的顶点坐标,长轴长,短轴长,离心率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的左右焦点分别为是椭圆右准线上的两个动点,且=0.
(1)设圆是以为直径的圆,试判断原点与圆的位置关系
(2)设椭圆的离心率为的最小值为,求椭圆的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为过点和上顶点的直线,下顶点的距离为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的动弦, 若为线段的中点,线段的中垂线和x轴交点为,试求的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线y=x+t与椭圆+y2=1相交于A、B两点,则|AB|的最大值是(   )
A.2                B.            C.          D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的中心在坐标原点,焦点在x轴上,以其两个焦点和短轴的两个端点为顶点的
四边形是一个面积为4的正方形,设P为该椭圆上的动点,CD的坐标分别是,则PC·PD的最大值为   

查看答案和解析>>

同步练习册答案