精英家教网 > 高中数学 > 题目详情
16.已知点A(1,2),B(3,1),则过AB中点垂直于直线x+y+1=0的方程是2x-2y-1=0.

分析 求出A、B的中点,AB的斜率,即可求解直线方程.

解答 解:点A(1,2),B(3,1),则AB中点(2,$\frac{3}{2}$),
则过AB中点垂直于直线x+y+1=0的斜率为:1.
所求直线方程为:y-$\frac{3}{2}$=x-2,即2x-2y-1=0.
故答案为:2x-2y-1=0.

点评 本题考查直线方程的求法.直线的垂直关系的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.化简下列各式:
(1)$\frac{{a}^{2}\root{3}{{a}^{2}b}}{\sqrt{ab}}$;
(2)$\frac{(b\sqrt{ab})^{3}\root{3}{{a}^{2}b}}{\root{3}{a{b}^{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=$\left\{\begin{array}{l}{{2}^{x-1},x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,则 f(2016)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若圆锥的底面与顶点都在球O的球面上,且圆锥的底面半径为1,体积为π,则球O的表面积为(  )
A.$\frac{16π}{9}$B.$\frac{100π}{9}$C.25πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知三棱锥A-BCD的侧棱长和底面边长都是3,求下列向量的数量积:
(1)$\overrightarrow{AD}•\overrightarrow{DB}$;
(2)$\overrightarrow{AD}•\overrightarrow{BC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对于每一个实数x,设f(x)是4x+1,x+2和4-2x三个函数中的最小值,则f(x)的最大值是(  )
A.$\frac{8}{3}$B.3C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知等比数列{an}中a1=$\frac{27}{16}$,an=$\frac{1}{3}$,q=-$\frac{2}{3}$,则n=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)左、右焦点分别为F1、F2,P为椭圆M上任一点,且|PF1||PF2|最大值的取值范围是[2c2,3c2],其中c=$\sqrt{{a}^{2}-{b}^{2}}$,则椭圆离心率e取值的最大值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数f(x)=4cos(2x-$\frac{π}{4}$)+5
(1)求函数f(x)在[-π,π]上单调递增区间;
(2)求出函数的对称中心和对称轴方程;
(3)求f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]的最值及相应x的值;
(4)若f(a)=3.且a∈[0,2π],求角a的值.

查看答案和解析>>

同步练习册答案