【题目】为了宣传今年10月在某市举行的“第十届中国艺术节”,“十艺节”筹委会举办了“十艺节”知识有奖问答活动,随机对市民15~65岁的人群抽样人,回答问题统计结果如下图表所示:
组号 | 分组 | 回答正确的人数 | 回答正确的人数占本组的频率 | 频率分布直方图 |
第1组 | 5 | 0.5 | ||
第2组 | 0.9 | |||
第3组 | 27 | |||
第4组 | 9 | 0.36 | ||
第5组 | 3 | 0.2 |
(1)分别求出的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,“十艺节”筹委会决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.
【答案】(1)18;0.9(2)
【解析】
(1)根据频率表可得第1组人数为,再结合频率分布直方图,进而可求出的值
(2)根据分层抽样算出各组抽取的人数,列举出所有的基本事件,再求出所抽取的人中第2组至少有1人获得幸运奖的情况,利用古典概型的概率计算公式即可求解.
(1)由频率表中第1组数据可知,第1组总人数为,
再结合频率分布直方图可知,
,.
(2)第2,3,4组中回答正确的共有54人.
∴利用分层抽样在54人中抽取6人,
每组分别抽取的人数为:第2组:人,
第3组:人,
第4组:人.
设第2组的2人为,第3组的3人为,
第4组的1人为,则从6人中抽2人所有可能的结果有:
,,,,,,
,,,,,,
,,,共15个基本事件,
其中第2组至少有1人被抽中的有,,,
,,,,,这9个基本事件.
∴第2组至少有1人获得幸运奖的概率为.
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是一个正三角形,若平面PAD⊥平面ABCD,则该四棱锥的外接球的表面积为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.
(1)求曲线的普通方程和极坐标方程;
(2)设直线与曲线交于两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积的经验公式为:.弧田(如图1阴影部分)由圆弧和其所对弦围成,弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.类比弧田面积公式得到球缺(如图 2)近似体积公式:圆面积矢.球缺是指一个球被平面截下的一部分,厦门嘉庚体育馆近似球缺结构(如图3),若该体育馆占地面积约为18000,建筑容积约为340000,估计体育馆建筑高度(单位:)所在区间为( )
参考数据: ,,,
,.
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】牛顿迭代法(Newton's method)又称牛顿–拉夫逊方法(Newton–Raphsonmethod),是牛顿在17世纪提出的一种近似求方程根的方法.如图,设是的根,选取作为初始近似值,过点作曲线的切线与轴的交点的横坐标,称是的一次近似值,过点作曲线的切线,则该切线与轴的交点的横坐标为,称是的二次近似值.重复以上过程,直到的近似值足够小,即把作为的近似解.设构成数列.对于下列结论:
①;
②;
③;
④.
其中正确结论的序号为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(k为常数,且).
(1)在下列条件中选择一个________使数列是等比数列,说明理由;
①数列是首项为2,公比为2的等比数列;
②数列是首项为4,公差为2的等差数列;
③数列是首项为2,公差为2的等差数列的前n项和构成的数列.
(2)在(1)的条件下,当时,设,求数列的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大约在20世纪30年代,世界上许多国家都流传着这样一个题目:任取一个正整数,如果它是偶数,则除以2;如果它是奇数,则将它乘以3加1,这样反复运算,最后结果必然是1.这个题目在东方被称为“角谷猜想”,世界一流的大数学家都被其卷入其中,用尽了各种方法,甚至动用了最先进的电子计算机,验算到对700亿以内的自然数上述结论均为正确的,但却给不出一般性的证明.例如取,则要想算出结果1,共需要经过的运算步数是( )
A.9B.10C.11D.12
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com