精英家教网 > 高中数学 > 题目详情
(2013•许昌三模)设向量
a
=(
3
sinθ+cosθ+1,1),
b
=(1,1),θ∈[
π
3
3
],m是向量
a
 在向量
b
向上的投影,则m的最大值是(  )
分析:由条件求得 
a
b
=2sin(θ+
π
6
)+2.由题意可得m=|
a
|•cos<
a
b
>=
2sin(θ+
π
6
)+2
2
.再由θ∈[
π
3
3
],利用正弦函数的定义域和值域求得
sin(θ+
π
6
)的最大值,即可求得m的最大值.
解答:解:∵向量
a
=(
3
sinθ+cosθ+1,1)=(2sin(θ+
π
6
)+1,1),
b
=(1,1),∴
a
b
=2sin(θ+
π
6
)+2.
由题意可得m=|
a
|•cos<
a
b
>=|
a
|•
a
b
|
a
|•|
b
|
=
2sin(θ+
π
6
)+2
2

再由θ∈[
π
3
3
],可得θ+
π
6
∈[
π
2
6
],sin(θ+
π
6
)∈[
1
2
,1],故m的最大值为
2+2
2
=2
2

故选C
点评:本题主要考查两个向量的夹角公式的应用,两角和的正弦公式,正弦函数的定义域和值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•许昌三模)已知f(x)=x3+ax2-a2x+2.
(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1)处的切线方程;
(Ⅱ)若a≠0 求函数f(x)的单调区间;
(Ⅲ)若不等式2xlnx≤f′(x)+a2+1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)已知圆C的方程为x2+y2=4,过点M(2,4)作圆C的两条切线,切点分别为A,B,直线AB恰好经过椭圆T:
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点和上顶点.
(1)求椭圆T的方程;
(2)已知直线l与椭圆T相交于P,Q两不同点,直线l方程为y=kx+
3
(k>0)
,O为坐标原点,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)如图,多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AB=CD=1,AC=
3
,AD=DE=2
,G为AD的中点.
(1)求证;AC⊥CE;
(2)在线段CE上找一点F,使得BF∥平面ACD,并给予证明;
(3)求三棱锥VG-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)己知集合M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若对所有m∈R,均有M∩N≠∅,则b的取值范同是(  )

查看答案和解析>>

同步练习册答案