精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知a,b,c成等比数列,且
(Ⅰ)求角B的大小;
(Ⅱ)若b=3,求△ABC的面积最大值.

【答案】解:(Ⅰ)因为a、b、c成等比数列,则b2=ac.由正弦定理得sin2B=sinAsinC.

所以
因为sinB>0,

因为B∈(0,π),
所以B=
又b2=ac,则b≤a或b≤c,即b不是△ABC的最大边,

(II)由余弦定理b2=a2+c2﹣2accosB得9=a2+c2﹣ac≥2ac﹣ac,得ac≤9.
所以,
当a=c=3时,△ABC的面积最大值为
【解析】(Ⅰ)由正弦定理结合已知可得sin2B=sinAsinC.又 ,结合sinB>0,可求sinB的值,结合B∈(0,π),即可求得B的大小,又b2=ac,则b≤a或b≤c,即b不是△ABC的最大边,从而可求B的值.(II)由余弦定理结合已知可得ac≤9,由三角形面积公式可得 ,即可求得△ABC的面积最大值.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+2x﹣2﹣a(a≤0),
(1)若a=﹣1,求函数的零点;
(2)若函数在区间(0,1]上恰有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为(其中为参数),现以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为

(1)写出直线和曲线的普通方程;

(2)已知点为曲线上的动点,求到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线
(1)求实数a的值
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是定义在R上的奇函数,且f(1)=2.
(1)求实数a,b并写出函数f(x)的解析式;
(2)判断函数f(x)在(﹣1,1)上的单调性并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是(
A.12
B.24
C.30
D.36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数.

(1)求实数的值;

(2)用定义证明函数上的单调性;

(3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB,PC的中点.

(1)求证:EF∥平面PAD;
(2)求证:EF⊥CD;
(3)若∠PDA=45°,求EF与平面ABCD所成的角的大小.

查看答案和解析>>

同步练习册答案