精英家教网 > 高中数学 > 题目详情

如图,△ABC内接于⊙O,AD平分∠BAC,交⊙O于点D,BE是切线,AD的延长线交BE于E,连接BD、CD.
(1)求证:BD平分∠CBE;
(2)求证:AB•BE=AE•DC.

证明:(1)∵AD平分∠BAC,∴弧BD=弧DC,BD=DC
∴∠CBD=∠BCD
∴∠BED=∠CBD
∴BD平分∠CBE;
(2)∵BE是切线,
∴∠EBD=∠BAD
∵∠E=∠E
∴△ABE∽△BDE

∴AB×BE=AE×BD
∵BD=DC
∴AB•BE=AE•DC.
分析:(1)利用AD平分∠BAC,可得弧BD=弧DC,BD=DC,从而可得∠CBD=∠BCD,即可证得BD平分∠CBE;
(2)证明△ABE∽△BDE,将比例式转化为等积式,利用BD=DC,可得结论.
点评:本题考查圆的切线的性质,考查三角形的相似,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,△ABC内接于圆O,AB是圆O的直径,AB=2,BC=1,设AE与平面ABC所成的角为θ,且tanθ=
3
2
,四边形DCBE为平行四边形,DC⊥平面ABC.
(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD⊥平面ADE;
(3)在CD上是否存在一点M,使得MO∥平面ADE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,△ABC内接于⊙O,AB=AC,直线MN切⊙O于点C,BE∥MN交AC于点E.若AB=6,BC=4,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC内接于圆柱的底面圆O,AB是圆O的直径,AB=2,BC=1,DC、EB是两条母线,且 tan∠EAB=
3
2

(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD⊥平面ADE;
(3)在CD上是否存在一点M,使得MO∥平面ADE,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•沈阳二模)选修4-1:几何证明选讲
如图,△ABC内接于⊙O,AB是⊙O的直径,PA是过点A的直线,且∠PAC=∠ABC.
(1)求证:PA是⊙O的切线;
(2)如果弦CD交AB于点E,AC=8,CE:ED=6:5,AE:EB=2:3,求直径AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:△ABC内接于⊙O,AB=AC,直线MN切⊙O于点C,BE∥MN交AC于点E,若AB=6,BC=4,则AE的长为(  )

查看答案和解析>>

同步练习册答案