精英家教网 > 高中数学 > 题目详情
已知函数  (a∈R).(1)若在[1,e]上是增函数,求a的取值范围;  (2)若a=1,a≤x≤e,证明:<

解析:(1)∵ ,且在[1,e]上是增函数,∴≥0恒成立,

即a≥-在[1,e]上恒成立, ∴a≥1……………… 6分

(2)证明:当a=1时,  x∈[1,e].w.w.w.k.s.5.u.c.o.m    

令F(x)= -=- ,

,∴F(x) 在[1,e]上是减函数,

∴F(x)≤F(1)=   ∴x∈[1,e]时,<…………… 12分

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年北京市十一学校高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

已知函数(a∈R且a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ) 记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点,如果在曲线C上存在点M(x,y),使得:①;②曲线C在M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.
试问:函数f(x)是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省百所重点高中高三(上)段考数学试卷(理科)(解析版) 题型:解答题

已知函数(a∈R且a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ) 记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点,如果在曲线C上存在点M(x,y),使得:①;②曲线C在M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.
试问:函数f(x)是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省常州高级中学高三(上)12月月考数学试卷(理科)(解析版) 题型:解答题

已知函数(a∈R且a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ) 记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点,如果在曲线C上存在点M(x,y),使得:①;②曲线C在M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.
试问:函数f(x)是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年甘肃省天水一中高一(下)第二次段考数学试卷(解析版) 题型:解答题

已知函数,a∈R.
(1)当a=1时,求函数f(x)的最大值;
(2)如果对于区间上的任意一个x,都有f(x)≤1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013届广东省梅州市高二第二学期3月月考理科数学试卷 题型:解答题

 

已知函数  (a∈R).

 (1)若在[1,e]上是增函数,求a的取值范围; 

(2)若a=1,1≤x≤e,证明:<.

 

查看答案和解析>>

同步练习册答案