精英家教网 > 高中数学 > 题目详情

【题目】已知等比数列的前项和为,且函数,若方程至少有三个实数根,则实数的取值范围是(

A.B.C.D.

【答案】C

【解析】

由等比数列前项和的性质,求得参数,再将方程根的个数的问题,转化为函数图像交点个数的问题,利用导数求得直线与函数相切时的斜率,即可求得参数的范围.

因为等比数列的前项和为

根据等比数列前项和的性质,容易知,解得.

,则

方程至少有三个实数根

等价于至少有三个实数根,

也等价于函数与直线有至少三个交点,

是斜率为,且恒过的直线,

故只需求出函数与直线有三个交点的临界状态时,对应直线的斜率即可.

则在同一直角坐标系下画出函数图像如下所示:

由图可知,当直线与相切时,恰有三个交点,

设切点为,故过切点的切线方程为:

,又因为,且该切线过点

故可得

,解得

故切点为,此时直线的斜率为

此时有三个交点,故可取;

又根据图象可知,当直线过点时,也是临界状态,

此时直线的斜率为

此时有三个交点,故可取;

综上所述,要满足题意,只需即可.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(1)若曲线在点处的切线与轴平行,求

(2)当时,函数的图象恒在轴上方,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】华为董事会决定投资开发新款软件,估计能获得万元到万元的投资收益,讨论了一个对课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过万元,同时奖金不超过投资收益的.

1)请分析函数是否符合华为要求的奖励函数模型,并说明原因;

2)若华为公司采用模型函数作为奖励函数模型,试确定正整数的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的短轴长和焦距相等,左、右焦点分别为,点满足:.已知直线l与椭圆C相交于AB两点.

1)求椭圆C的标准方程;

2)若直线l过点,且,求直线l的方程;

3)若直线l与曲线相切于点),且中点的横坐标等于,证明:符合题意的点T有两个,并任求出其中一个的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求处的切线方程;

2)令,已知函数有两个极值点,且,求实数的取值范围;

3)在(2)的条件下,若存在,使不等式对任意(取值范围内的值)恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的极值;

2)讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,,平面平面.

(1)求证:

(2)若,直线与平面所成角为的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程和的直角坐标方程;

2)设是曲线上一点,此时参数,将射线绕原点逆时针旋转交曲线于点,记曲线的上顶点为点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性并指出相应单调区间;

2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案