精英家教网 > 高中数学 > 题目详情
(2011•洛阳二模)已知点M(-5,0),F(1,0),点K满足
MK
=2
KF
,P是平面内一动点,且满足|
PF
|•|
KF
|=
PK
FK

(1)求P点的轨迹C的方程;
(2)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与曲线C相交于点A,B,l2与曲线C相交于点D,E,求四边形ADBE的面积的最小值.
分析:(1)先确定K的坐标,再利用
PF
|•|
KF
|=
PK
FK
,即可求P点的轨迹C的方程;
(2)设出直线方程,与抛物线方程联立,求得|AB|,|DE|,表示出面积,利用基本不等式,即可求得最值.
解答:解:(1)设K(x0,y0),P(x,y)
∵M(-5,0),F(1,0),
MK
=2
KF

∴(x0+5,y0)=2(1-x0,-y0
∴x0=-1,y0=0,∴K(-1,0)
∵|
PF
|•|
KF
|=
PK
FK

∴2
(x-1)2+y2
=(-1-x0,-y0)•(-2,0)
(x-1)2+y2
=1+x,即y2=4x;
(2)设l1的方程为x=ny+1(n≠0),与y2=4x联立,消去x可得y2-4ny-4=0
设A(x1,y1),B(x2,y2),则y1+y2=4n,y1y2=-4
∴|AB|=
1+n2
|y1-y2|
=4(n2+1)
∵l1⊥l2,∴l2的方程为x=-
1
n
y+1,与y2=4x联立,
同理可得|DE|=4(
1
n2
+1)
∴四边形ADBE的面积为
1
2
|AB||DE|=8(n2+1)(
1
n2
+1)=8(n2+
1
n2
+2)≥32
当且仅当n2=
1
n2
,即n=±1时,四边形ADBE的面积的最小值为32.
点评:本题考查轨迹方程,考查向量知识的运用,考查直线与抛物线的位置关系,考查四边形面积的计算,考查基本不等式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•洛阳二模)设函数f(x)的定义域为R,f(x)=
x,0≤x≤1
(
1
2
)x-1,-1≤x<0.
且对任意的x∈R都有f(x+1)=f(x-1),若在区间[-1,3]上函数g(x)=f(x)-mx-m恰有四个不同零点,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)曲线y=x2ex+2x+1在点P(0,1)处的切线与x轴交点的横坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)已知函数f(x)=(ax2-2x+a)e-x
(I)当a=1时,求函数f(x)的单调区间;
(Ⅱ)设g(x)=-
f′(x)
e-x
-a-2,h(x)=
1
2
x2-2x-lnx
,若x>l时总有g(x)<h(x),求实数c范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)从8名女生,4名男生中选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法种数为
112
112
. (用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)设函数f(x)=|2x+1|-|x-2|.
(1)若关于x的不等式a≥f(x)存在实数解,求实数a的取值范围;
(2)若?x∈R,f(x)≥-t2-
52
t-1
恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案