精英家教网 > 高中数学 > 题目详情
3.若f(x)=3x2+4,且x∈{0,1},则f(x)的值域是(  )
A.{4,7}B.(4,7)C.[4,7]D.{4,-1}

分析 把x=0,1分别代入已知的函数解析式求出函数值得答案.

解答 解:∵f(x)=3x2+4,且x∈{0,1},
∴f(0)=4,f(1)=3×12+4=7.
∴f(x)的值域是{4,7}.
故选:A.

点评 本题考查函数的值域及其求法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.某小组有5名学生,其中3名女生、2名男生,现从这个小组中任选2名学生担任正、副组长,则正组长是男生的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知变量x,y满足不等式组$\left\{\begin{array}{l}{4x+3y-24≤0}\\{2x-y-2≥0}\\{x≥0}\\{y≥2}\end{array}\right.$,则z=(x-4)2+y2取值范围为[4,17].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知1gx+1g(2y)=1g(x+4y+a)
(1)当a=6时求xy的最小值;
(2)当a=0时,求x+y+$\frac{2}{x}$+$\frac{1}{2y}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.证明不等式ln(1+$\frac{1}{x}$)>$\frac{1}{1+x}$(0<x<+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)在区间[a,b]上连续,证明:${∫}_{a}^{b}$f(x)dx=${∫}_{a}^{b}$f(a+b-x)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=mx-cosx,g(x)=(ax-1)cosx-sinx(a>0).
(1)若函数y=f(x)在(-∞,+∞)上是单调递增函数,求实数m的最小值;
(2)若m=1,且对于任意x∈[0,$\frac{π}{2}$],都有不等式f(x)≥g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=sin4x+2$\sqrt{3}$sinxcosx-cos4x
(1)求函数的最小正周期.
(2)求出该函数在[0,π]上的单调递增区间.
(3)关于x的方程f(x)=k(0<k<2,0≤x≤π)有两个解x1,x2时,求x1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是函数f(x)=Acos($\frac{2}{3}$πx+φ)-1(A>0,|φ|<$\frac{π}{2}$)的图象的一部分,则f(2015)=(  )
A.1B.2C.$\frac{{\sqrt{3}}}{2}$D.-3

查看答案和解析>>

同步练习册答案