精英家教网 > 高中数学 > 题目详情

【题目】已知表1和表2是某年部分日期的天安门广场升旗时刻表

1:某年部分日期的天安门广场升旗时刻表

日期

升旗时刻

日期

升旗时刻

日期

升旗时刻

日期

升旗时刻

11

7:36

49

5:46

79

4:53

108

6:17

121

7:31

428

5:19

727

5:07

1026

6:36

210

7:14

516

4:59

814

5:24

1113

6:56

32

6:47

63

4:47

92

5:42

121

7:16

322

6:15

622

4:46

920

5:59

1220

7:31

2:某年2月部分日期的天安门广场升旗时刻表

日期

升旗时刻

日期

升旗时刻

日期

升旗时刻

21

7:23

211

7:13

221

6:59

23

7:22

213

7:11

223

6:57

25

7:20

215

7:08

225

6:55

27

7:17

217

7:05

227

6:52

29

7:15

219

7:02

228

6:49

(Ⅰ)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;

(Ⅱ)甲,乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立.记为这两人中观看升旗的时刻早于7:00的人数,求的分布列和数学期望

Ⅲ)将表1和表2中的升旗时刻化为分数后作为样本数据(如7:31化为).记表2中所有升旗时刻对应数据的方差为1和表2中所有升旗时刻对应数据的方差为,判断的大小.(只需写出结论

【答案】(Ⅰ)(Ⅱ)

【解析】

试题分析:(Ⅰ)在表个日期中,有个日期的升旗时刻早于,根据古典概型概率公式可估计这一天的升旗时刻早于的概率 ;(Ⅱ)可能的取值为,根据对立事件与独立事件的概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望;(Ⅲ)观察表格数据可得,表中所有升旗时刻对应数据较分散,可得.

试题解析:(Ⅰ)记事件A为“从表1的日期中随机选出一天,这一天的升旗时刻早于”,

在表120个日期中,有15个日期的升旗时刻早于7:00,

所以

(Ⅱ)X可能的取值为

记事件B为“从表2的日期中随机选出一天,这一天的升旗时刻早于7:00”,

所以 X 的分布列为:

X

0

1

2

P

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某社区有居民人,为了迎接第十一个“全民健身日”的到来,居委会从中随机抽取了名居民,统计了他们本月参加户外运动时间(单位:小时)的数据,并将数据进行整理,分为组:,得到如图所示的频率分布直方图.

(Ⅰ)试估计该社区所有居民中,本月户外运动时间不小于小时的人数;

(Ⅱ)已知这名居民中恰有名女性的户外运动时间在,现从户外运动时间在的样本对应的居民中随机抽取人,求至少抽到名女性的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在抛物线上.

1)求的方程;

2)过上的任一点的顶点不重合)作轴于,试求线段中点的轨迹方程;

3)在上任取不同于点的点,直线与直线交于点,过点轴的垂线交抛物线于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求不等式的解集;

(2)若直线的图象所围成的多边形面积为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只昆虫的产卵数与温度有关,现收集了6组观测数据与下表中.由散点图可以发现样本点分布在某一指数函数曲线的周围.

温度

21

23

25

27

29

31

产卵数/

7

11

21

24

66

114

,经计算有:

26

40.5

19.50

6928

526.60

70

1)试建立关于的回归直线方程并写出关于的回归方程.

2)若通过人工培育且培育成本与温度和产卵数的关系为(单位:万元),则当温度为多少时,培育成本最小?

注:对于一组具有线性相关关系的数据,其回归直线的斜率和截距的最小二乘公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,点上且其横坐标为1,以为圆心、为半径的圆与的准线相切.

(1)求的值;

(2)过点的直线交于两点,以为邻边作平行四边形,若点关于的对称点在上,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式的解集为

(1)求a,b的值.

(2)当时,解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动圆与圆相外切且与轴相切,则动圆的圆心的轨迹记

1)求轨迹的方程;

2)定点到轨迹(1上任意一点的距离的最小值;

3)经过定点的直线,试分析直线与轨迹的公共点个数,并指明相应的直线的斜率是否存在,若存在求的取值或取值范围情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】能够使得命题“曲线上存在四个点满足四边形是正方形”为真命题的一个实数的值为__________.

查看答案和解析>>

同步练习册答案