精英家教网 > 高中数学 > 题目详情
x∈(0,π),若sin(
π
2
-
x)=
-
12
13
-
12
13
,则tanx=
-
5
12
-
5
12
分析:根据诱导公式sin(
π
2
-x
)=cosx=-
12
13
,再求出cosx,从而求出tanx.
解答:解:∵sin(
π
2
-x
)=cosx=-
12
13
<0,且x∈(0,π),
∴sinx=
1-cos2x
=
1-(
12
13
)
2
=
5
13

∴tanx=
sinx
cosx
=
5
13
-
12
13
=-
5
12

故答案为:-
12
13
-
5
12
点评:本题考查诱导公式,同角三角函数基本关系式的应用属于基础题.准确掌握公式是前提.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设k∈R,函数f(x)=ex-(1+x+kx2)(x>0).
(Ⅰ)若k=1,试求函数f(x)的导函数f'(x)的极小值;
(Ⅱ)若对任意的t>0,存在s>0,使得当x∈(0,s)时,都有f(x)<tx2,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设k∈R,函数f(x)=ex-(1+x+kx2)(x>0).
(Ⅰ)若k=1,试求函数f(x)的导函数f'(x)的极小值;
(Ⅱ)若对任意的t>0,存在s>0,使得当x∈(0,s)时,都有f(x)<tx2,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设k∈R,函数f(x)=ex-(1+x+kx2)(x>0).
(Ⅰ)若k=1,试求函数f(x)的导函数f'(x)的极小值;
(Ⅱ)若对任意的t>0,存在s>0,使得当x∈(0,s)时,都有f(x)<tx2,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年浙江省高考数学仿真模拟试卷5(理科)(解析版) 题型:解答题

设k∈R,函数f(x)=ex-(1+x+kx2)(x>0).
(Ⅰ)若k=1,试求函数f(x)的导函数f'(x)的极小值;
(Ⅱ)若对任意的t>0,存在s>0,使得当x∈(0,s)时,都有f(x)<tx2,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年浙江省高考数学仿真模拟试卷5(理科)(解析版) 题型:解答题

设k∈R,函数f(x)=ex-(1+x+kx2)(x>0).
(Ⅰ)若k=1,试求函数f(x)的导函数f'(x)的极小值;
(Ⅱ)若对任意的t>0,存在s>0,使得当x∈(0,s)时,都有f(x)<tx2,求实数k的取值范围.

查看答案和解析>>

同步练习册答案