精英家教网 > 高中数学 > 题目详情
12.计算($\frac{1}{2}$)-3+(-3)2-($\frac{1}{27}$)-${\;}^{\frac{1}{3}}$-(-3$\frac{1}{5}$)0=13.

分析 利用指数幂的运算性质即可得出.

解答 解:原式=23+9-${3}^{-3×(-\frac{1}{3})}$-1
=17-3-1
=13.
故答案为:13.

点评 本题考查了指数幂的运算性质,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设曲线$\sqrt{\frac{{x}^{2}}{4{n}^{2}}}$+$\sqrt{{y}^{2}}$=1(n∈N*)所围成的平面区域Dn,记Dn内(含区域边界)的整点(整点即纵、横坐标均为整数的点)个数为an,数列{an}的前n项和为Sn
(1)若a∈N*,且$\frac{{S}_{n}}{2n+5}$+$\frac{32}{{a}_{n}+1}$≥a恒成立,求a的最大值;
(2)在(1)a取最大值的条件下,当bn=$\frac{(a-2)^{n}•{S}_{n}}{(2n+5)}$时,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知△ABC的三边分别为a,b,c且a=2,∠A=45°,S△ABC=2,则△ABC的外接圆的周长为2$\sqrt{2}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,过抛物线C:x2=4y的对称轴上一点P(0,m)(m>0)作直线l与抛物线交于A(x1,y1),B(x2,y2)两点,点Q是点P关于原点的对称点.
(Ⅰ) 求证:x1x2=-4m;
(Ⅱ) 若$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,且$\overrightarrow{QP}$⊥($\overrightarrow{QA}$-μ$\overrightarrow{QB}$),求证:λ=μ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,三个内角A、B、C的对边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列.则△ABC是(  )
A.直角三角形B.等腰直角三角形C.等边三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)的定义域为[-2,2],对任意的x∈[-2,2],都有f(-x)=-f(x),且f(2)=2.
若对任意的m,n∈[-2,2],m+n≠0,都有$\frac{f(m)+f(n)}{m+n}$>0.
(Ⅰ)判断函数f(x)在[-2,2]上的单调性,并加以证明;
(Ⅱ)解不等式f(x-$\frac{1}{2}$)<f(x2-$\frac{1}{4}$);
(Ⅲ)若f(x)≤t2-2at+1对任意的x∈[-2,2]且a∈[-2,2]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式|x+2|+|x-3|≥m2-4m对任意实数x恒成立,则实数m的取值范围是(  )
A.(1,5)B.[2,3)C.[-1,5]D.[-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,角A、B、C所对的边分别为a,b,c若2acosB=c,则2cos2$\frac{A}{2}$+sinB-1的取值范围是 (  )
A.[-$\sqrt{2}$,$\sqrt{2}$]B.[1,$\sqrt{2}$]C.(0,$\sqrt{2}$]D.(-1,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.因为(x+1)2≥0,所以当x=-1时,式子10-(x+1)2有最大值为10,x=-1时,式子x2+2x+5有最小值,这个值为4.

查看答案和解析>>

同步练习册答案