精英家教网 > 高中数学 > 题目详情

【题目】下列命题正确的是(  )
A.y=sinx的图象向右平移个单位得y=cosx的图象
B.y=cosx的图象向右平移个单位得y=sinx的图象
C.当φ>0时,y=sinx的图象向右平移φ个单位可得y=sin(x+φ)的图象
D.当φ<0时,y=sinx的图象向左平移φ个单位可得y=sin(x﹣φ)的图象

【答案】B
【解析】解:y=sinx的图象向右平移个单位得y=sin(x﹣)=﹣cosx的图象,故A不正确;
y=cosx的图象向右平移个单位得y=cos(x﹣)=sinx的图象,故B正确;
当φ>0时,y=sinx的图象向右平移φ个单位可得y=sin(x﹣φ)的图象,可知C不正确;
当φ<0时,y=sinx的图象向左平移|φ|个单位可得y=sin(x+φ)的图象,故D不正确.
故选B.
【考点精析】解答此题的关键在于理解五点法作函数y=Asin(ωx+φ)的图象的相关知识,掌握描点法及其特例—五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知cosα,sinα是函数f(x)=x2﹣tx+t(t∈R)的两个零点,则sin2α=(
A.2﹣2
B.2 ﹣2
C. ﹣1
D.1﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差d≠0,且a1 , a3 , a13成等比数列,若a1=1,Sn是数列{an}前n项的和,则 (n∈N+)的最小值为(
A.4
B.3
C.2 ﹣2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.
(1)求证:B1C1∥平面A1DE;
(2)求证:平面A1DE⊥平面ACC1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(3,﹣4), =(6,﹣3), =(5﹣x,﹣3﹣y), =(4,1)
(1)若四边形ABCD是平行四边形,求x,y的值;
(2)若△ABC为等腰直角三角形,且∠B为直角,求x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinωx+cosωx的最小正周期为π,x∈R,ω>0是常数.
(1)求ω的值;
(2)若f(+)= , θ∈(0,),求sin2θ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是菱形, ,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,E是AB中点.
(Ⅰ)求证:直线AM∥平面PNC;
(Ⅱ)求证:直线CD⊥平面PDE;
(III)在AB上是否存在一点G,使得二面角G﹣PD﹣A的大小为 ,若存在,确定G的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线x2 =1的左右焦点分别为F1、F2 , 过点F2的直线交双曲线右支于A,B两点,若△ABF1是以A为直角顶点的等腰三角形,则△AF1F2的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,☉O内切于△ABC的边于点D,E,F,AB=AC,连接AD交☉O于点H,直线HF交BC的延长线于点G.
(1)求证:圆心O在AD上;
(2)求证:CD=CG;
(3)若AH∶AF=3∶4,CG=10,求HF的长.

查看答案和解析>>

同步练习册答案