精英家教网 > 高中数学 > 题目详情
20.已知数列{an}的前n项和Sn=10n-n2,数列{bn}的每一项都有bn=|an|,则数列{bn}的前10项和T10=50.

分析 根据题意可得{an}是由一个首项为正数,公差为负数的等差数列,{an}的各项取绝对值后得到一个新数列{bn},求出它的前10项和即可,应转化为求数列{an}的和.

解答 解:∵数列{an}的前n项和为Sn=10n-n2
∴Sn-1=10(n-1)-(n-1)2,(n≥2)
两式相减得an=11-2n,
又n=1时,a1=S1=10-1=9,满足上式;
∴an=11-2n,
∴bn=|an|=|11-2n|;
显然n≤5时,bn=an=11-2n,Tn=10n-n2
n≥6时,bn=-an=2n-11,
∴Tn=(a1+a2+…+a5)-(a6+a7+…+an)=2S5-Sn=50-10n+n2
故Tn=$\left\{\begin{array}{l}{10n{-n}^{2},n≤5}\\{{n}^{2}-10n+50,n≥6}\end{array}\right.$
∴数列{bn}的前10项和为:T10=102-10×10+50=50.
故答案为:50.

点评 本题主要考查了数列的通项与求和方法的运用问题,也考查了分析问题与解答问题的能力,是中档题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.假设要考查某企业生产的袋装牛奶的质量是否达标,现从500袋牛奶中抽取60袋进行检验,利用随机数表法抽取样本时,先将500袋牛奶按000,001,…,499进行编号,如果从随机数表第8行第26列的数开始,按三位数连续向右读取,最先检验的5袋牛奶的号码是(下面摘取了某随机数表第7行至第9行)(  )
84421 75331 57245 50688 77047 44767 21763
35025 83921 20676 63016 47859 16955 56719
98105 07185 12867 35807 44395 23879 33211.
A.455 068 047 447 176B.169 105 071 286 443
C.050 358 074 439 332D.447 176 335 025 212

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.cos12°cos18°-sin12°sin18°=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设{an}是任意的等比数列,它的前n项和,前2n项和与前3n项和分别为P,Q,R,则下列等式中恒成立的为(  )
A.P+R=2QB.Q(Q-P)=P(R-P)C.Q(Q-P)=RD.Q2=PR

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.A={x|x2-2x-3<0},B={x|(x-m-1)(x-m+1)≥0}
(1)当m=3时,求A∪B
(2)若p:x2-2x-3<0;q:(x-m-1)(x-m+1)≥0且q是p的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=$\left\{\begin{array}{l}(3a-1)x+4a,\;(x<1)\\ \frac{a}{x},\;x≥1\end{array}$是(-∞,+∞)上的减函数,则a的取值范围是(  )
A.$a<\frac{1}{3}$B.$a≤\frac{1}{3}$C.$\frac{1}{6}≤a<\frac{1}{3}$D.$0<a<\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设复数w=($\frac{a+i}{1+i}$)2,其中a为实数,若w的实部为2,则w的虚部为(  )
A.-$\frac{3}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面ABCD是正方形,DM⊥PC,垂足为M.
(1)求证:BD⊥平面PAC.
(2)求证:平面MBD⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设△ABC的内角A,B,C所对的边分别是a,b,c,且$\frac{a}{b}$cosC+$\frac{c}{2b}$=1.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.

查看答案和解析>>

同步练习册答案