精英家教网 > 高中数学 > 题目详情

【题目】如图,已知正三棱柱ABC=A1B1C1的各棱长都是4EBC的中点,动点F在侧棱CC1上,且不与点C重合.

1)当CF=1时,求证:EF⊥A1C

2)设二面角C﹣AF﹣E的大小为θ,求tanθ的最小值.

【答案】1)见解析 (2

【解析】

1)过EEN⊥ACN,连接EFNFAC1,由直棱柱的性质可知,底面ABC⊥侧面A1C

∴EN⊥侧面A1C

NFEF在侧面A1C内的射影

在直角三角形CNF中,CN=1

则由,得NF∥AC1,又AC1⊥A1C,故NF⊥A1C

由三垂线定理可知EF⊥A1C

2)连接AF,过NNM⊥AFM,连接ME

由(1)可知EN⊥侧面A1C,根据三垂线定理得EM⊥AF

∴∠EMN是二面角C﹣AF﹣E的平面角即∠EMN=θ

∠FAC=αα≤45°

在直角三角形CNE中,NE=,在直角三角形AMN中,MN=3sinα

tanθ=,又α≤45°∴0sinα≤

故当α=45°时,tanθ达到最小值,

tanθ=,此时FC1重合

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,轴为极轴建立极坐标系,曲线的方程为为参数),曲线的极坐标方程为,若曲线相交于两点.

(1)求的值;

(2)求点两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在抽取彩票双色球中奖号码时,有33个红色球,每个球的编号分别为010233.一位彩民用随机数表法选取6个号码作为6个红色球的编号,选取方法是从下面的随机数表中第1行第6列的数字3开始,从左向右读数,则依次选出的第3个红色球的编号为(

49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64

57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

A.21B.32C.09D.20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为.

1)求椭圆的标准方程;

2)斜率为的直线与椭圆交于不同的两点,且线段的中垂线交轴于点,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,对于,都有,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)当时,求不等式的解集;

(2)若不等式的解集为空集,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了冰雪答题王冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:,得到如图所示的频率分布直方图.

1)求的值;

2)估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);

3)在抽取的100名学生中,规定:比赛成绩不低于80分为优秀,比赛成绩低于80分为非优秀.请将下面的2×2列联表补充完整,并判断是否有99.9%的把握认为比赛成绩是否优秀与性别有关

优秀

非优秀

合计

男生

40

女生

50

合计

100

参考公式及数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今年入冬以来,我市天气反复.在下图中统计了我市上个月前15天的气温,以及相对去年同期的气温差(今年气温-去年气温,单位:摄氏度),以下判断错误的是(

A.今年每天气温都比去年气温低B.今年的气温的平均值比去年低

C.今年8-12号气温持续上升D.今年8号气温最低

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系,直线过点,且倾斜角为,以为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为.

(1)求直线的参数方程和圆的标准方程;

(2)设直线与圆交于两点,若,求直线的倾斜角的值.

查看答案和解析>>

同步练习册答案