【题目】已知函数,.
(1)讨论函数的单调性;
(2)若存在与函数,的图象都相切的直线,求实数的取值范围.
【答案】(1)见解析;(2)
【解析】
(1)对h(x)求导,得,对,分别讨论,得单调区间;
(2)设f(x)在点(x1,f(x1))与g(x)在点(x2,f(x2))处切线相同,则,分别求得导数和切线的斜率,构造新函数 ,求出导数和单调区间,最值,运用单调性计算可得a的范围.
(1)函数的定义域为,,
所以
所以当即时,,在上单调递增;
当即时,
当时,在上单调递增;
当时,令得
|
|
|
|
| + | - | + |
| 增 | 减 | 增 |
综上:当时,在上单调递增;当时在,单调递增,在单调递减.
(2)设函数在点与函数在点处切线相同,
,则,
由,得,再由
得,把代入上式得
设(∵x2>0,∴x∈(0,+∞)),
则 不妨设.
当时,,当时,
所以在区间上单调递减,在区间上单调递增,
把代入可得:
设,则对恒成立,
所以在区间上单调递增,又
所以当时,即当时,
又当时,
因此当时,函数必有零点;即当时,必存在使得成立;
即存在使得函数在点与函数在点处切线相同.
又由单调递增得,因此
所以实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知椭圆E:()的离心率为,F是E的右焦点,过点F的直线交E于点和点().当直线与x轴垂直时,.
(1)求椭圆E的方程;
(2)设直线l:交x轴于点G,过点B作x轴的平行线交直线l于点C.求证:直线过线段的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂,两条相互独立的生产线生产同款产品,在产量一样的情况下,通过日常监控得知,,生产线生产的产品为合格品的概率分别为和.
(1)从,生产线上各抽检一件产品,若使得产品至少有一件合格的概率不低于99.5%,求的最小值;
(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的作为的值.
①已知,生产线的不合格品返工后每件产品可分别挽回损失5元和3元,若从两条生产线上各随机抽检1000件产品,以挽回损失的平均数为判断依据,估计哪条生产线的挽回损失较多?
②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件可分别获利10元、8元、6元,现从,生产线的最终合格品中各随机抽取100件进行分级检测,结果统计如图所示,用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估计该厂产量2000件时利润的期望值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“珠算之父”程大位是我国明代著名的数学家,他的应用巨著《算法统综》中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节四升五,上梢四节三升八,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明.”((注)四升五:4.5升,次第盛:盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节竹的容积为
A. 2.2升B. 2.3升
C. 2.4升D. 2.5升
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知线段是过抛物线的焦点F的一条弦,过点A(A在第一象限内)作直线垂直于抛物线的准线,垂足为C,直线与抛物线相切于点A,交x轴于点T,给出下列命题:
(1);
(2);
(3).
其中正确的命题个数为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=4cos θ,直线l与圆C交于A,B两点.
(1)求圆C的直角坐标方程及弦AB的长;
(2)动点P在圆C上(不与A,B重合),试求△ABP的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近五年来某草场羊只数量与草场植被指数两变量间的关系如表所示,绘制相应的散点图,如图所示:
年份 | 1 | 2 | 3 | 4 | 5 |
羊只数量(万只) | 1.4 | 0.9 | 0.75 | 0.6 | 0.3 |
草地植被指数 | 1.1 | 4.3 | 15.6 | 31.3 | 49.7 |
根据表及图得到以下判断:①羊只数量与草场植被指数成减函数关系;②若利用这五组数据得到的两变量间的相关系数为,去掉第一年数据后得到的相关系数为,则;③可以利用回归直线方程,准确地得到当羊只数量为2万只时的草场植被指数;以上判断中正确的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com