精英家教网 > 高中数学 > 题目详情
已知正项等比数列{an}满足:a7=a6+2a5若存在两项am、an使得,则的最小值为   
【答案】分析:由已知中正项等比数列{an}满足:a7=a6+2a5,我们易求出数列的公比,再结合存在两项am、an使得,我们可以求出正整数m,n的和,再结合基本不等式中“1”的活用,即可得到答案.
解答:解:设等比数列{an}的首项为a1,公比为q,
∵a7=a6+2a5,则a1•q6=a1•q5+2a1•q4
即q2-q-2=0,解得q=2或q=-1(舍去)

则m+n=6
则6()=(m+n)()=5+()≥5+4=9

故答案为
点评:本题考查的知识点是等比数列的性质,基本不等式,其中根据已知中正项等比数列{an}满足:a7=a6+2a5若存在两项am、an使得,将问题转化为用基本不等式求最值是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项等比数列{an}中,a1=1,a3a7=4a62,则S6=(  )
A、
61
32
B、
31
16
C、
63
32
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an使得
aman
=4a1,则
1
m
+
1
n
的最小值为(  )
A、
2
3
B、
5
3
C、
25
6
D、不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•锦州二模)已知正项等比数列{an}满足:a3=a2+2a1,若存在两项am,an,使得
aman
=4a1
,则
1
m
+
4
n
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项等比数列{an}中,a4•a5=8,则log2a1+log2a2+…+log2a8的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项等比数列{an}的前n项和为Sn,若S3=3,S9-S6=12,则S6=(  )
A、9
B、
21
2
C、18
D、39

查看答案和解析>>

同步练习册答案