精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,且过点

(1)求的方程;

(2)是否存在直线相交于两点,且满足:①为坐标原点)的斜率之和为2;②直线与圆相切,若存在,求出的方程;若不存在,请说明理由.

【答案】(1);(2).

【解析】试题分析:

(1)由离心率,已知点坐标代入得可解得得标准方程;

(2)存在性问题,假设直线存在,把代入的方程得,同时设,则可得,①

代入得出的一个等式,再由直线和圆相切又得一个等式,联立可解得,同时注意直线与椭圆相交的条件,如满足则说明存在.

试题解析:

(1)由已知得

解得,∴椭圆的方程为

(2)把代入的方程得:

,则,①

由已知得

,②

把①代入②得

,③

,得

由直线与圆相切,则

③④联立得(舍去)或,∴

∴直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两种坐标系中的长度单位相同,圆的直角坐标方程为,直线的参数方程为为参数),射线的极坐标方程为

1)求圆和直线的极坐标方程;

(2)已知射线与圆的交点为,与直线的交点为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利用简单随机抽样从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如图所示.在这些用户中,用电量落在区间[150,250]内的户数为(

A.46
B.48
C.50
D.52

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在地区附近有A,B,C三家社区医院,并且他们的选择是相互独立的.
(Ⅰ)求甲、乙两人都选择A社区医院的概率;
(Ⅱ)求甲、乙两人不选择同一家社区医院的概率;
(Ⅲ)设4名参加保险人员中选择A社区医院的人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:参数方程与极坐标系

在平面直角坐标系中,直线的参数方程为为参数, 为倾斜角),以坐标原点O为极点, 轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为

1)求曲线的直角坐标方程,并 C的焦点F的直角坐标;

2)已知点,若直线C相交于A,B两点,且,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD,PB⊥AC,Q是线段PB的中点. (Ⅰ)求证:AB⊥平面PAC;
(Ⅱ)求证:AQ∥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数

1)求不等式的解集

2)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x2+ax﹣ + ,在区间[0,1]上的最大值是2,求函数f(x)在区间[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)设,试讨论单调性;

(2)设,当时,任意,存在,使,求实数的取值范围.

查看答案和解析>>

同步练习册答案