【题目】已知等差数列中, .等比数列的通项公式.
(I)求数列的通项公式;
(II)求数列的前项和.
科目:高中数学 来源: 题型:
【题目】通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间,讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生的注意力开始分散,分析结果和实验表明,用表示学生掌握和接受概念的能力(的值越大,表示接受能力越强),表示提出和讲授概念的时间(单位:分),可以有以下公式: .
(1)开讲多少分钟后,学生的接受能力最强?能维持多少分钟?
(2)开讲5分钟与开讲20分钟比较,学生的接受能力何时强一些?
(3)一个数学难题,需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列是公差为正数的等差数列,其前项和为,且,.
(1)求数列的通项公式;
(2)数列满足,.
①求数列的通项公式;
②是否存在正整数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列中,,且对任意的成等比数列,其公比为.
(1)若,求;
(2)若对任意的成等差数列,其公差为.设.
①求证:成等差数列并指出其公差;
②若,试求数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—5:不等式选讲
已知函数f(x)=|2x-a|+a.
(1)若不等式f(x)≤6的解集为{x|-2≤x≤3},求实数a的值;
(2)在(1)的条件下,若存在实数n使f(n)≤m-f(-n)成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,an+1=,设bn=,n∈N*。
(1)证明{bn}是等比数列(指出首项和公比);
(2)求数列{log2bn}的前n项和Tn。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某中学高一学生的数学与地理的水平测试成绩抽样统计如下表:若抽取的学生数为,成绩分为(优秀)、(良好)、(及格)三个等级,设, 分别表示数学成绩与地理成绩.例如:表中地理成绩为等级的共有人,数学成绩为级且地理成绩为等级的有8人.已知与均为等级的频率是0.07.
(1)设在该样本中,数学成绩优秀率是,求, 的值;
(2)已知, ,求数学成绩为等级的人数比数学成绩为等级的人数多的概率.
人数 | |||
14 | 40 | 10 | |
36 | |||
28 | 8 | 34 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(Ⅰ)求在未来4年中,至多1年的年入流量超过120的概率;
(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系;
年入流量 | |||
发电机最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台发电机年利润为5000万元;若某台发电机未运行,则该台发电机年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com