【题目】一半径为4.8米的水轮如图所示,水轮圆心距离水面2.4米,已知水轮每60秒逆时针转动一圈,如果当水轮上点从水中浮现时(图中点)开始计时,则( )
A.点第一次到达最高点需要10秒
B.在水轮转动的一圈内,有20秒的时间,点距离水面的高度不低于4.8米
C.点距离水面的高度(米)与(秒)的函数解析式为
D.当水轮转动50秒时,点在水面下方,距离水面1.2米
科目:高中数学 来源: 题型:
【题目】2018年6月14日,国际足联世界杯足球赛在俄罗斯举行了第21届赛事.虽然中国队一如既往地成为了看客,但中国球迷和参赛的32支队伍所在国球迷一样,对本届球赛热情似火,在6月14日开幕式的第二天,我校足球社团从全校学生中随机抽取了120名学生,对是否收看开幕式情况进行了问卷调查,统计数据如下:
收看 | 没收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(1)根据上表说明,能否有99%的把握认为,是否收看开幕式与性别有关?
(2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法,选取12人参加志愿者宣传活动.
(i)问男、女学生各选取了多少人?
(ⅱ)若从这12人中随机选取3人到校广播站开展足球项目的宣传介绍,设选取的3人中女生人数为X,写出X的分布列,并求.
附:,其中.
| 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为,曲线的参数方程是(为参数).
(1)求直线l和曲线的普通方程;
(2)设直线l和曲线交于两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市100户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图所示.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,,的三组用户中,用分层抽样的方法抽取10户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,若存在实数,使得等式对于定义域内的任意实数均成立,则称函数为“可平衡”函数,有序数对称为函数的“平衡”数对.
(1)若,判断是否为“可平衡”函数,并说明理由;
(2)若且,均为的“可平衡”数对,当时,方程有两个不相等的实根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的焦距为2,左顶点与上顶点连线的斜率为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点P(m,0)作圆x2+y2=1的一条切线l交椭圆C于M,N两点,当|MN|的值最大时,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com