精英家教网 > 高中数学 > 题目详情

【题目】现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.

I求张同学至少取到1道乙类题的概率;

II已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是且各题答对与否相互独立.用表示张同学答对题的个数,求的分布列和数学期望.

【答案】I

II

X

0

1

2

3

P

【解析】I解法一 解法二

IIX所有可能取值为0,1,2,3.

,,

,

所求的分布列为

X

0

1

2

3

P

第一小问可以从两个方面去思考,一是间接法,就是张同学1道乙类题都没有取到的取法是多少?二是直接法,就是取一道乙类题和两道甲类体;两道乙类题和一道甲类体;三道乙类题。三种情况加起来就是共有多少种取法。第二问一是思考随机变量的所有可能取值,二是算出对应的概率,其中X=1和X=2要注意有两种情形。最后利用数学期望的公式求解。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数f(x),若存在常数s,t,使得取定义域内的每一个x的值,都有f(x)=﹣f(2s﹣x)+t,则称f(x)为“和谐函数”,给出下列函数 ①f(x)= ②f(x)=(x﹣1)2 ③f(x)=x3+x2+1 ④f(x)=ln( ﹣3x)cosx,其中所有“和谐函数”的序号是(
A.①③
B.②③
C.①②④
D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin2x+2 sinxcosx
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函数f(x)在区间 上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,角A、B、C的对边分别为a、b、c,且 =1.
(1)求角A;
(2)若a=4 ,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出,加快水污染防治,建设美丽中国.根据环保部门对某河流的每年污水排放量(单位:吨)的历史统计数据,得到如下频率分布表:

将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立.

(1)求在未来3年里,至多1年污水排放量的概率;(2)该河流的污水排放对沿河的经济影响如下:当时,没有影响;当时,经济损失为10万元;当时,经济损失为60万元.为减少损失,现有三种应对方案:

方案一:防治350吨的污水排放,每年需要防治费3.8万元;

方案二:防治310吨的污水排放,每年需要防治费2万元;

方案三:不采取措施.

试比较上述三种文案,哪种方案好,并请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有6个人排成一排照相,由于甲乙性格不合,所以要求甲乙不相邻,丙最高,要求丙站在最中间的两个位置中的一个位置上,则不同的站法有( )种.

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断函数的单调性;

(2)若,当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥P﹣ABC中,△ABC为等边三角形,PA=PB=PC=2,PA⊥PB,三棱锥P﹣ABC的外接球的表面积为(
A.48π
B.12π
C.4 π
D.32 π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设偶函数f(x)在[0,+∞)单调递增,则使得f(x)>f(2x﹣1)成立的x的取值范围是(
A.( ,1)
B.(﹣∞, )∪(1,+∞)??
C.(﹣
D.(﹣∞,﹣ )∪( ,+∞)

查看答案和解析>>

同步练习册答案