【题目】已知函数f(x)=(ax+1)ex﹣(a+1)x﹣1.
(1)求y=f(x)在(0,f(0))处的切线方程;
(2)若x>0时,不等式f(x)>0恒成立,求a的取值范围.
【答案】
(1)解:∵f'(x)=(ax+1+a)ex﹣(a+1),
∴f'(0)=0,
因此y=f(x)在(0,f(0))处的切线l的斜率为0,
又f(0)=0,
∴y=f(x)在(0,f(0))处的切线方程为y=0;
(2)解:当x>0时,f(x)=(ax+1)ex﹣(a+1)x﹣1>0恒成立,
令g(x)=f′(x)=(ax+1+a)ex﹣(a+1),则g′(x)=(ax+1+2a)ex,
若a≥0,则g′(x)=(ax+1+2a)ex>0,g(x)=(ax+1+a)ex﹣(a+1)在(0,+∞)上为增函数,
又g(0)=0,∴g(x)>0在(0,+∞)上恒成立,即f(x)在(0,+∞)上为增函数,
由f(0)=0,∴x>0时,不等式f(x)>0恒成立;
若a<0,当a 时,g′(x)<0在(0,+∞)上成立,g(x)在(0,+∞)上为减函数,
∵g(0)=0,∴g(x)<0在(0,+∞)上恒成立,即f(x)在(0,+∞)上为减函数,
由f(0)=0,∴x>0时,不等式f(x)>0不成立;
当 <a<0时,x∈(0, )时,g′(x)>0,x∈( )时,g′(x)<0,
g(x)在(0,+∞)上有最大值为g( ),当x→+∞时,g(x)<0,即f′(x)<0,
∴存在x0∈( ),使f(x)<0,即x>0时,不等式f(x)>0不恒成立.
综上,a的取值范围为[0,+∞).
【解析】(1)求出原函数的导函数,得到f'(0)=0,再求出f(0)=0,利用直线方程的点斜式求得y=f(x)在(0,f(0))处的切线方程;(2)令g(x)=f′(x)=(ax+1+a)ex﹣(a+1),则g′(x)=(ax+1+2a)ex , 然后对a分类分析,当a≥0,则g′(x)>0,g(x)在(0,+∞)上为增函数,结合g(0)=0,可得g(x)>0在(0,+∞)上恒成立,即f(x)在(0,+∞)上为增函数,再由f(0)=0,可得x>0时,不等式f(x)>0恒成立;当a<0时,由导数分析x>0时,不等式f(x)>0不恒成立,由此可得a的取值范围.
【考点精析】认真审题,首先需要了解函数的最大(小)值与导数(求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值).
科目:高中数学 来源: 题型:
【题目】f(x)是定义在非零实数集上的函数,f′(x)为其导函数,且x>0时,xf′(x)﹣f(x)<0,记a= ,b= ,c= ,则( )
A.a<b<c
B.c<a<b
C.b<a<c
D.c<b<a
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线y2=2px(p>0)的焦点F的直线与抛物线相交于M、N两点,自M、N向准线l作垂线,垂足分别为M1、N1.
(1)求;
(2)记△FMM1、△FM1N1、△FNN1的面积分别为、、,求
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校某文具商店经营某种文具,商店每销售一件该文具可获利3元,若供大于求则削价处理,每处理一件文具亏损1元;若供不应求,则可以从外部调剂供应,此时每件文具仅获利2元.为了了解市场需求的情况,经销商统计了去年一年(52周)的销售情况.
销售量(件) | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
周数 | 2 | 4 | 8 | 13 | 13 | 8 | 4 |
以去年每周的销售量的频率为今年每周市场需求量的概率.
(1)要使进货量不超过市场需求量的概率大于0.5,问进货量的最大值是多少?
(2)如果今年的周进货量为14,写出周利润Y的分布列;
(3)如果以周利润的期望值为考虑问题的依据,今年的周进货量定为多少合适?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的前n项和为Sn , 公比q>0,S2=2a2﹣2,S3=a4﹣2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn= ,Tn为{bn}的前n项和,求T2n .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com