精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,直线的参数方程为为参数,为直线的倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出曲线的直角坐标方程,并求时直线的普通方程;

2)直线和曲线交于两点,点的直角坐标为,求的最大值.

【答案】1 ;(2

【解析】

1)把两边同时乘以,然后结合极坐标与直角坐标的互化公式可得曲线的直角坐标方程,由直线的参数方程可知直线过定点,并求得直线的斜率,即可写出直线的普通方程;

2)把直线的参数方程代入曲线的普通方程,化为关于的一元二次方程,利用判别式、根与系数的关系及此时的几何意义求解.

解:(1)∵,∴

∴曲线的直角坐标方程为

时,直线的普通方程为

2)把直线的参数方程为代入

,则同号且小于0

得:

的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其导函数为.

1)讨论函数的单调性;

2)若,关于的不等式恒成立,求实数的取值范围;

3)若函数有两个零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点分别在轴和轴上运动,且,若动点满足.

1)求出动点的轨迹的标准方程;

2)设动直线与曲线有且仅有一个公共点,与圆相交于两点(两点均不在坐标轴上),求直线的斜率之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱-的底面是边长为2的等边三角形,底面,点分别是棱上的点,且

(Ⅰ)证明:平面平面

(II)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为常数, ,函数 (其中是自然对数的底数).

(1)过坐标原点作曲线的切线,设切点为,求证:

(2)令,若函数在区间上是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是等差数列,数列是等比数列,且的前n项和为.若对任意的恒成立.

1)求数列的通项公式;

2)若数列满足问:是否存在正整数,使得,若存在求出的值,若不存在,说明理由;

3)若存在各项均为正整数公差为的无穷等差数列,满足,且存在正整数,使得成等比数列,求的所有可能的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正六棱锥的底面边长为,高为.现从该棱锥的个顶点中随机选取个点构成三角形,设随机变量表示所得三角形的面积.

(1)求概率的值;

(2)求的分布列,并求其数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P是圆上任意一点,F2(1,0),线段PF2的垂直平分线与半径PF1交于点Q,当点P在圆F1上运动时,记点Q的轨迹为曲线C.

1)求曲线C的方程;

2)过点的直线l与(1)中曲线相交于AB两点,O为坐标原点,求△AOB面积的最大值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:

质量指标值分组

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

频数

6

26

38

22

8

I)在答题卡上作出这些数据的频率分布直方图:

II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);

III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合质量指标值不低于95的产品至少要占全部产品的80%的规定?

查看答案和解析>>

同步练习册答案