分析 (I)根据条件判断DA,DC,DE两两垂直,建立空间坐标系,求出线段对应的向量,利用向量法即可求异面直线AE与MF所成的角的余弦值;
(Ⅱ)假设存在N,求出平面的法向量,利用二面角的余弦值建立方程关系进行求解即可.
解答 解:(I)∵平面ADE⊥平面ABCD,DE⊥AD,
∴DE⊥平面ABCD,
∵四边形ABCD是边长为1的正方形,
∴DA,DC,DE两两垂直,
以点D为原点,以DA所在的直线为x轴、以DC所在的直线为y轴、以DE所在的直线为z轴,
建立空间坐标系.则有题意可得 D(0,0,0)、A(1,0,0)、B(1,1,0)、E(0,0,1)、
F(1,1,1)、M($\frac{1}{2}$,1,0).
∴$\overrightarrow{AE}$=(-1,0,1),$\overrightarrow{MF}$=($\frac{1}{2}$,0,1),
cos<$\overrightarrow{AE}$,$\overrightarrow{MF}$>=$\frac{\overrightarrow{AE}•\overrightarrow{MF}}{|\overrightarrow{AE}||\overrightarrow{MF}|}$=$\frac{-\frac{1}{2}+1}{\sqrt{2}•\sqrt{\frac{1}{4}+1}}$=$\frac{\frac{1}{2}}{\sqrt{2}•\frac{\sqrt{5}}{2}}=\frac{1}{\sqrt{10}}$=$\frac{\sqrt{10}}{10}$,
故异面直线AE与MF所成角的余弦值为 $\frac{\sqrt{10}}{10}$.
(Ⅱ)假设在线段AF上存在点N,使得使平面DMN与平面ABCD所成的角的余弦值为$\frac{3\sqrt{14}}{14}$.
∵$\overrightarrow{AF}$=(0,1,1),
可设$\overrightarrow{AN}$=λ•$\overrightarrow{AF}$=(0,λ,λ).0≤λ≤1,
又$\overrightarrow{DM}$=($\frac{1}{2}$,1,0),$\overrightarrow{DN}$=$\overrightarrow{DA}$+$\overrightarrow{AN}$=(1,λ,λ),
设平面DMN的法向量为$\overrightarrow{m}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DM}=\frac{1}{2}x+y=0}\\{\overrightarrow{m}•\overrightarrow{DN}=x+λy+λz=0}\end{array}\right.$,
令x=2,则y=-1,z=$\frac{λ-2}{λ}$,即$\overrightarrow{m}$=(2,-1,$\frac{λ-2}{λ}$),
平面ABCD的法向量为$\overrightarrow{n}$=(0,0,1),
由|cos$<\overrightarrow{m},\overrightarrow{n}>$|=|$\frac{\overrightarrow{m}•\overrightarrow{n}}{\left|\overrightarrow{m}\right|\left|\overrightarrow{n}\right|}$|=|$\frac{\frac{λ-2}{λ}}{\sqrt{4+1+(\frac{λ-2}{λ})^{2}}}$|=$\frac{3\sqrt{14}}{14}$,
平方得$\frac{(\frac{λ-2}{λ})^{2}}{5+(\frac{λ-2}{λ})^{2}}$=$\frac{9×14}{1{4}^{2}}$=$\frac{9}{14}$.
即14($\frac{λ-2}{λ}$)2=45+9($\frac{λ-2}{λ}$)2,
即5($\frac{λ-2}{λ}$)2=45,
则($\frac{λ-2}{λ}$)2=9,
即1-$\frac{2}{λ}$=3或1-$\frac{2}{λ}$=-3,
得$\frac{2}{λ}$=-2或$\frac{2}{λ}$=4,
则λ=-1(舍)或λ=$\frac{1}{2}$,
此时N为AF的中点,
即线段AF上是存在中点N,使平面DMN与平面ABCD所成的角的余弦值为$\frac{3\sqrt{14}}{14}$.
点评 本题考查异面直线所成的角以及二面角的应用,建立空间坐标系,求出平面的法向量,利用向量法是解决空间角常用的方法,解题时要注意向量法的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,16] | B. | (-∞,16) | C. | (16,+∞) | D. | [16,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com