精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,a,b,c分别为角A,B,C所对的边,且
3
a=2csinA,
(Ⅰ)求角C的大小;
(Ⅱ)若c=
7
,且a+b=4,求△ABC的面积.
考点:余弦定理的应用
专题:解三角形
分析:(Ⅰ)利用正弦定理及已知条件
3
a=2csinA
得到sinC=
3
2
,又因为△ABC是锐角三角形,求出角C的大小;
(Ⅱ)由余弦定理c2=a2+b2-2abcosC得ab=3,利用三角形的面积公式求出△ABC的面积.
解答: 解:(Ⅰ)由
3
a=2csinA
及正弦定理得,
a
c
=
2sinA
3
=
sinA
sinC

∵sinA≠0,
sinC=
3
2
.…(4分)
∵△ABC是锐角三角形,
C=
π
3
.…(6分)
(Ⅱ)由余弦定理,c2=a2+b2-2abcosC得,
(
7
)2=(a+b)2-2ab-2abcos
π
3

即ab=3.…(9分)
所以S△ABC=
1
2
absinC=
1
2
×3sin
π
3
=
3
3
4
.…(12分)
点评:本题主要考查正弦定理、余弦定理、三角形的面积公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

根据下列条件求圆的方程:
(1)经过点P(1,1)和坐标原点,并且圆心在直线2x+3y+1=0上;
(2)圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2);
(3)过三点A(1,12),B(7,10),C(-9,2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:(a-1)x+ay-3a+2=0,直线l2:2x+4y+2a-1=0,a是实数.
(1)若l1⊥l2,求a的值及l1与l2的交点坐标;
(2)若l1∥l2,求a的值及l1与l2的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①数列{an}的前n项和Sn=3n2-n+1,则该数列是等差数列;
②各项都为正数的等比数列{an}中,如果公比q>1,那么等比数列{an}是递增数列;
③等比数列1,a,a2,a3,…(a≠0)的前n和为Sn=
1-an
1-a

④等差数列{an}的前n项和为Sn,若S9<0,S10>0,则此数列的前5项和最小.
其中正确命题为
 
(填上所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+x.
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)求证:f(x)是R上的增函数;
(3)若f(m+1)+f(2m-3)<0,求m的取值范围.
(参考公式:a3-b3=(a-b)(a2+ab+b2))

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知两正数x,y满足x+2y=1,求xy的最大值
(2)当x∈(1,+∞),不等式x+
1
x-1
≥a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-1)2=1,圆D:x2+y2-2mx=0.
(1)若直线x+y-a=0与圆C有公共点,求实数a的取值范围;
(2)若点A(x,y)是圆C上的任一点,且x2+y2-(m+
2
2
)x-(m+
2
2
)y≤0(m∈R)恒成立,判断圆C与圆D的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的内角A,B,C所对的边分别为a,b,c,若c2=a2+b2+ab,则∠C=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系中,点A(1,-2,3)关于平面xoz的对称点为B,关于x轴的对称点为C,则B、C间的距离为
 

查看答案和解析>>

同步练习册答案