精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求函数在点处的切线方程;

2)求函数上的值域;

3)若存在,使得成立,求的最大值.(其中自然常数

【答案】(1)(2)(3)的最大值为6.

【解析】

)(1)对求导得到,然后代入切点横坐标,得到斜率,点斜式写出切线方程,整理得答案;(2)利用导数判断出的单调性,根据单调性求出其最小值,并比较在两个端点时的函数值,得到最大值,从而得到答案;(3)由(2)可得,要使成立,且的值最大,则的值应最小,即,从而得到,从而得到的最大值为.

解:(1

,又

,即为所求切线的方程.

2

,得(舍去负根)

所以时,单调递减,

时,单调递增.

又因为

时,.

3)由(2)知,时,.

所以有

而要使成立,且的值最大,

每个的函数值应最小,

即,即

从而得到

所以

所以的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是定义在上的偶函数,满足,当时,,若,则的大小关系为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)设点分别为曲线与曲线上的任意一点,求的最大值;

2)设直线为参数)与曲线交于两点,且,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学研究曲线的性质,得到如下结论:①的取值范围是;②曲线是轴对称图形;③曲线上的点到坐标原点的距离的最小值为. 其中正确的结论序号为(

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震释放出的能量(单位:焦耳)与地震里氏震级之间的关系为.

(1)已知地震等级划分为里氏,根据等级范围又分为三种类型,其中小于级的为小地震”,介于级到级之间的为有感地震”,大于级的为破坏性地震若某次地震释放能量约焦耳,试确定该次地震的类型;

(2)2008年汶川地震为里氏,2011年日本地震为里氏,:2011年日本地震所释放的能量是2008年汶川地震所释放的能量的多少倍? ()

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面为等边三角形,的中点.

1)证明:

2)若,求二面角平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点分别为,椭圆的离心率为,且经过点,经过作平行直线,交椭圆于两点和两点.

1)求的方程;

2)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线的参数方程为为参数,直线与曲线分别交于两点.

(1)若点的极坐标为,求的值;

(2)求曲线的内接矩形周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017高考新课标Ⅲ19)如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBDAB=BD.

(1)证明:平面ACD⊥平面ABC

(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角DAEC的余弦值.

查看答案和解析>>

同步练习册答案