精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱中,,的中点,.

1)求证:平面

2)若异面直线所成角为,求四棱锥的体积.

【答案】1)证明见解析.(2

【解析】

(1)于点,连.再根据中位线证明即可.

(2) 根据(1)可知或其补角为异面直线所成角,再判断可得为等边三角形,即可求得,再根据线面垂直的判定与性质可得平面,继而求得四棱锥的体积即可.

1)证明:如图,连于点,连.

因为直三棱柱中,四边形是矩形,故点中点,

的中点,故,

平面,平面,故平面.

2)解:由(1)知,又,故或其补角为异面直线所成角.

,则,,,故为等腰三角形,故,

为等边三角形,则有,得到.

为等腰直角三角形,故,又平面,平面,

,又,故平面,

又梯形的面积,,

则四棱锥的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是给定的平面,设不在内的任意两点MN所在的直线为l,则下列命题正确的是(

A.内存在直线与直线l异面

B.内存在直线与直线l相交

C.内存在直线与直线l平行

D.存在过直线l的平面与平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】时代悄然来临,为了研究中国手机市场现状,中国信通院统计了2019年手机市场每月出货量以及与2018年当月同比增长的情况,得到如下统计图,根据该统计图,下列说法错误的是(

A.2019年全年手机市场出货量中,5月份出货量最多

B.2019年下半年手机市场各月份出货量相对于上半年各月份波动小

C.2019年全年手机市场总出货量低于2018年全年总出货量

D.201812月的手机出货量低于当年8月手机出货量

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是等差数列,其前项和为,数列是公比大于0的等比数列,且 .

(Ⅰ)求数列的通项公式;

(Ⅱ)令,求数列的前项和为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点与定点的距离和该动点到直线的距离的比是常数

1)求动点轨迹方程

2)已知点,问在轴上是否存在一点,使得过点的任一条斜率不为0的弦交曲线两点,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学参加某个知识答题游戏节目,答题分两轮,第一轮为“选题答题环节”第二轮为“轮流坐庄答题环节”.首先进行第一轮“选题答题环节”,答题规则是:每位同学各自从备选的5道不同题中随机抽出3道题进行答题,答对一题加10分,答错一题(不答视为答错)减5分,已知甲能答对备选5道题中的每道题的概率都是,乙恰能答对备选5道题中的其中3道题;第一轮答题完毕后进行第二轮“轮流坐庄答题环节”,答题规则是:先确定一人坐庄答题,若答对,继续答下一题…,直到答错,则换人(换庄)答下一题…以此类推.例如若甲首先坐庄,则他答第1题,若答对继续答第2题,如果第2题也答对,继续答第3题,直到他答错则换成乙坐庄开始答下一题,…直到乙答错再换成甲坐庄答题,依次类推两人共计答完20道题游戏结束,假设由第一轮答题得分期望高的同学在第二轮环节中最先开始作答,且记第道题也由该同学(最先答题的同学)作答的概率为),其中,已知供甲乙回答的20道题中,甲,乙两人答对其中每道题的概率都是,如果某位同学有机会答第道题且回答正确则该同学加10分,答错(不答视为答错)则减5分,甲乙答题相互独立;两轮答题完毕总得分高者胜出.回答下列问题

1)请预测第二轮最先开始作答的是谁?并说明理由

2)①求第二轮答题中

②求证为等比数列,并求)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点为的坐标满足圆方程,且圆心满足.

(1)求椭圆的方程;

(2)过点的直线交椭圆两点,过垂直的直线交圆两点,为线段中点,若的面积 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数的极值;

(2)当时,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点为,离心率为,过点且垂直于轴的直线被椭圆截得的弦长为1.

1)求椭圆的方程;

2)若直线交椭圆于点两点,与线段和椭圆短轴分别交于两个不同点,且,求的最小值.

查看答案和解析>>

同步练习册答案