精英家教网 > 高中数学 > 题目详情
16、从1到100的自然数中,每次取出不同的两个数,使它的和大于100,则不同的取法有多少种.
分析:根据题意,分取出的数为1、2、3、…100,共100种情况分析,可以发现其中的规律,进而相加可得答案.
解答:解:从1,2,3,…,97,98,99,100中取出1,有1+100>100,取法数1个;
取出2,有2+100>100,2+99>100,取法数2个;
取出3,取法数3个,

取出k,取法数k个,

取出50,有50+51>100,50+52>100,…,50+100>100,取法有50个.
所以取出数字1至50,共得取法数N1=1+2+3+…+50=1275.
取出51,有51+52>100,51+53>100,…,51+100>100,共49个;
取出52,则有48个,

取出k,取法数100-k个,

取出99,只有1个,
取出100,没有符合的情况.
所以取出数字51至100(N1中取过的不在取),则N2=49+48+…+2+1=1225.
故总的取法有N=N1+N2=2500个.
点评:本题考查分类加法计数原理的运用,注意分类后,寻找规律,避免大量运算,其次注意分类讨论要不重不漏.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则可有
 
种不同的取法.

查看答案和解析>>

科目:高中数学 来源:2012年苏教版高中数学选修2-3 1.2排列练习卷(解析版) 题型:解答题

 从1到100的自然数中, 每次取出不同的两个数, 使它的和大于100, 则不同的取法有多少种.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则可有______种不同的取法.

查看答案和解析>>

科目:高中数学 来源:2011年云南省高三数学一轮复习单元测试12:概率(解析版) 题型:解答题

从1到100的自然数中,每次取出不同的两个数,使它的和大于100,则不同的取法有多少种.

查看答案和解析>>

同步练习册答案