精英家教网 > 高中数学 > 题目详情
2.变量x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ x-2y≤2\\ y≤0\end{array}\right.$,当目标函数z=2x-y取得最大值时,其最优解为(2,0).

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最优解.

解答 解:画出满足条件的平面区域,如图示:

由z=2x-y得:y=2x-z,
显然直线过A(2,0)时,z最大,
故答案为:(2,0).

点评 本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.当x>1时,关于函数f(x)=x+$\frac{1}{x-1}$,下列叙述正确的是(  )
A.函数f(x)有最小值2B.函数f(x)有最大值2C.函数f(x)有最小值3D.函数f(x)有最大值3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.A为三角形一内角,若sinA+cosA=$\frac{1}{5}$,cosA-sinA=-$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知圆C:x2+y2-2x-1=0,直线l:3x-4y+12=0,圆C上任意一点P到直线l的距离小于2的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=sin(2x-$\frac{π}{3}$)(x∈R)的图象为C,以下结论正确的是①②.(写出所有正确结论的编号)
①图象C关于直线x=$\frac{11π}{12}$对称;
②图象C关于点($\frac{2π}{3}$,0)对称;
③函数f(x)在区间(-$\frac{π}{12}$,$\frac{5π}{2}$)内是增函数;
④由y=sin2x的图象向右平移$\frac{π}{3}$个单位长度可以得到图象C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在空间直角坐标系中,A(0,0,2),B(2,2,2),在平面xoy中找一点P,使得|PA|+|PB|最小,则点P的坐标为(  )
A.(0,0,0)B.(2,2,0)C.(1,1,0)D.(0,1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z=$\frac{2}{1+i}$,则|z|等于(  )
A.2B.$\sqrt{2}$C.2 $\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知AB是圆O的一条弦,过点A、B分别作AE⊥AB,BF⊥AB,交弧AB上任意一点T的切线于点E、F,OT交AB于点C,求证:
(Ⅰ)∠CBT=∠CFT;
(Ⅱ)CT2=AE•BF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=x+$\frac{1}{{e}^{-x}}$,若直线:y=kx与曲线y=f(x)相切,则k=1+e.

查看答案和解析>>

同步练习册答案