精英家教网 > 高中数学 > 题目详情
16.命题“?x>0,都有x≥1”的否定为?x>0,使得x<1.

分析 利用全称命题的否定是特称命题,去判断.

解答 解:因为命题是全称命题,根据全称命题的否定是特称命题,
所以命题的否定:?x>0,使得x<1.
故答案为:?x>0,使得x<1

点评 本题主要考查全称命题的否定,要求掌握全称命题的否定是特称命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知定义域为(-1,1),函数f(x)=-x3+3x且f(a-3)+f(9-a2)<0,则a的取值范围是(3,$\sqrt{10}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=BC=2,$AD=CD=\sqrt{7}$,$PA=\sqrt{3}$,∠ABC=120°,G为线段PC上的点.
(1)若G是PC的中点,
①求证:PA∥平面GBD
②求DG与平面APC所成的角的正切值;
(2)若G满足PC⊥面GBD,求$\frac{PG}{GC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知m,n是两条不同直线,α,β是两个不同的平面,且n?β,则下列叙述正确的是(  )
A.若m∥n,m?α,则α∥βB.若α∥β,m?α,则m∥nC.若α∥β,m⊥n,则m⊥αD.若m∥n,m⊥α,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知抛物线x=4y2上一点P(m,1),焦点为F.则|PF|=(  )
A.m+1B.2C.$\frac{63}{16}$D.$\frac{65}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数${f_0}(x)={({\frac{1}{2}})^{|x|}}$,${f_1}(x)=|{{f_0}(x)-\frac{1}{2}}|$,${f_n}(x)=|{{f_{n-1}}(x)-{{({\frac{1}{2}})}^n}}|$,则方程${f_n}(x)={({\frac{1}{n+2}})^n}$有2n+1个实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数$f(x)=\frac{{5-x+{4^x}}}{2}-\frac{{|{5-x-{4^x}}|}}{2}$,则f(x)的单调增区间为(-∞,1],$f(x)>\sqrt{5}$的解集为(1,5-$\sqrt{5}$)∪(log4$\sqrt{5}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列四个结论中:正确结论的个数是
①若x∈R,则$tanx=\sqrt{3}$是$x=\frac{π}{3}$的充分不必要条件;
②命题“若x-sinx=0,则x=0”的逆命题为“若x≠0,则x-sinx≠0”;
③若向量$\overrightarrow a\;,\;\overrightarrow b$满足$|\overrightarrow a•\overrightarrow b|=|\overrightarrow a||\overrightarrow b|$,则$\overrightarrow a∥\overrightarrow b$恒成立;(  )
A.1个B.2个C.3个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=xlnx-k(x-1)
(1)求f(x)的单调区间;并证明lnx+$\frac{e}{x}$≥2(e为自然对数的底数)恒成立;
(2)若函数f(x)的一个零点为x1(x1>1),f'(x)的一个零点为x0,是否存在实数k,使$\frac{x_1}{x_0}$=k,若存在,求出所有满足条件的k的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案