精英家教网 > 高中数学 > 题目详情

【题目】运货卡车以每小时x千米的速度匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14.

(1)求这次行车总费用y关于x的表达式;

(2)x为何值时,这次行车的总费用最低,并求出最低费用的值.

【答案】(1) yxx[50100] (yxx[50100]).(2) x18千米/时,这次行车的总费用最低,最低费用的值为26.

【解析】

1)先确定所用时间,再乘以每小时耗油与每小时工资的和得到总费用表达式,(2)利用基本不等式求最值即得结果.

(1)设所用时间为t (h)

y×2×14×x[50100].

所以,这次行车总费用y关于x的表达式是yxx[50100]

(yxx[50100]).

(2)yx≥26

当且仅当x

x18时等号成立.

故当x18千米/时,这次行车的总费用最低,最低费用的值为26.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

设平面上向量(cosαsinα) (0°≤α360°)()

(1)试证:向量垂直;

(2)当两个向量的模相等时,求角α.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若两个椭圆的离心率相等,则称两个椭圆是相似的.如图,椭圆与椭圆是相似的两个椭圆,并且相交于上下两个顶点,椭圆的长轴长是4,椭圆长轴长是2,点分别是椭圆的左焦点与右焦点.

1)求椭圆的方程;

2)过的直线交椭圆于点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点离心率为. 

(1)求椭圆的标准方程;

(2)过坐标原点作直线交椭圆两点,过点的平行线交椭圆两点.

①是否存在常数满足?若存在,求出这个常数;若不存在,请说明理由;

②若的面积为的面积为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某摸球游戏的规则如下:从装有5个大小、形状完全相同的小球的盒中摸球(其中3个红球、2个黄球),每次摸一个球记录颜色并放回,若摸出红球记1分,摸出黄球记2分.

1)求摸球三次得分为5的概率;

2)设ξ为摸球三次所得的分数,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是无穷等比数列,若的每一项都等于它后面所有项的倍,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201911日起我国实施了个人所得税的新政策,新政策的主要内容有:①个税起征点为5000元,②每月应纳税所得额(含税)=收入个税起征点专项附加扣除.赵先生某月收入元,符合赡养老人与子女教育专项附加扣除,共计3000.

新个税政策的税率表部分内容如下:

级数

一级

二级

三级

每月应纳税所得额(含税)

不超过3000元的部分

超过3000元至12000元的部分

超过1200025000元的部分

税率(%)

3

10

20

1)当时,赵先生当月应缴纳的个税额是多少?

2)设赵先生当月应缴纳的个税额是元,若,请求出关于的函数;

3)若赵先生该月应纳的个税额为3020元,问他的月收入是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱的侧棱垂直于底面, ,点分别是的中点.

(1)证明:平面

(2)设,当为何值时,平面,试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别求适合下列条件的椭圆的标准方程.

(1)焦点在坐标轴上,且经过点A (,-2),B(-2,1)

(2)与椭圆有相同焦点且经过点M(,1).

查看答案和解析>>

同步练习册答案