精英家教网 > 高中数学 > 题目详情
14.已知a>b>0,椭圆C1的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,双曲线C2的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,C1与C2的离心率之积为$\frac{{\sqrt{3}}}{2}$,则双曲线C2的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{6}}}{2}$

分析 求出椭圆与双曲线的离心率,然后推出ab关系,即可求出双曲线C2的离心率.

解答 解:a>b>0,椭圆C1的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,
∴C1的离心率为:$\frac{\sqrt{{a}^{2}{-b}^{2}}}{a}$,
双曲线C2的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,
∴C2的离心率为:$\frac{\sqrt{{a}^{2}{+b}^{2}}}{a}$,
∵C1与C2的离心率之积为$\frac{\sqrt{3}}{2}$,
∴$\frac{\sqrt{{a}^{2}{-b}^{2}}}{a}$•$\frac{\sqrt{{a}^{2}{+b}^{2}}}{a}$=$\frac{\sqrt{3}}{2}$,
∴($\frac{b}{a}$)2=$\frac{1}{2}$,即$\frac{b}{a}$=$\frac{\sqrt{2}}{2}$,
则C2的离心率:$\frac{\sqrt{{a}^{2}{+b}^{2}}}{a}$=$\frac{\sqrt{6}}{2}$,
故选:D

点评 本题考查椭圆与双曲线的基本性质,离心率的求法,基本知识的考查,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知直线L:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),圆C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数).
(1)当α=$\frac{π}{4}$时,求直线L与圆C交点的中点坐标;
(2)证明:直线L与圆C相交,并求最短弦的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\left\{{\begin{array}{l}{{2^x},x≤0}\\{{{log}_2}x,x>0}\end{array}}\right.$
(1)在所给的平面直角坐标系中画出函数f(x)的图象;
(2)利用图象求f(x)=$\frac{1}{2}$时x的值;
(3)当0<f(x)<$\frac{1}{2}$时,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的左焦点为(-2,0),离心率为$\frac{1}{2}$,则C的标准方程为(  )
A.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$B.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$C.$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{8}=1$D.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{8}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知奇函数f(x)在定义域(-2,2)内是单调递增函数,求满足f(1-m)+f(1-3m)<0的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设m∈R,过定点A的动直线x+my=0和过定点B的直线mx-y-m+3=0交于点P(x,y),则|PA|+|PB|的最大值是$2\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$f(x)={log_{\frac{1}{2}}}({x^2}-2x-3)$的单调减区间是(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)在等差数列{an}中,已知a3=5,S3=21,求a8与S7的值.
(2)在公比为2的等比数列{an}中,a3•a11=16,求a6的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知四面体P-ABC,其中△ABC是边长为6的等边三角形,PA⊥平面ABC,PA=4,则四面体P-ABC外接球的表面积为64π.

查看答案和解析>>

同步练习册答案