精英家教网 > 高中数学 > 题目详情
16.关于函数f(x)=|sinx|+|cosx|,给出下列三个结论:
①函数f(x)的最小值是1;
②函数f(x)的最大值是$\sqrt{2}$;
③函数f(x)在区间(0,$\frac{π}{4}$)上单调递增.
其中全部正确结论的序号是(  )
A.B.②③C.①③D.①②③

分析 首先把三角函数变形成f(x)=$\sqrt{1+\left|sin2x\right|}$的形式,进而逐一分析四个结论的真假,可得答案;

解答 解:∵函数f(x)=|sinx|+|cosx|=$\sqrt{1+\left|sin2x\right|}$,
故当sin2x=0时,函数取最小值1,故①正确;
当sin2x=±1时,函数取最大值$\sqrt{2}$,故②正确;
当x∈(0,$\frac{π}{4}$)时,2x∈(0,$\frac{π}{2}$),此时sin2x随x的增大从0增至1,
故函数f(x)为增函数,故③正确;
故选:D.

点评 本题考查的知识点是三角函数的图象和性质,函数的最值,函数的单调性,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若对任意的x>1,函数x+xln x≥k(3x-e)(其中e是白然对数的底数,e=2.71828…),则实数k的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=$\frac{-lnx}{x+1}$+$\frac{1}{x}$,证明f(x)>$\frac{lnx}{x-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,值域为[0,+∞)的偶函数是(  )
A.y=x2+1B.y=lgxC.y=|x|D.y=xcosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.化简$\overrightarrow{AB}$+$\overrightarrow{BC}$-$\overrightarrow{AD}$等于(  )
A.$\overrightarrow{CD}$B.$\overrightarrow{DC}$C.$\overrightarrow{AD}$D.$\overrightarrow{CB}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=sinωx(其中ω>0)图象过(π,-1)点,且在区间(0,$\frac{π}{3}$)上单调递增,则ω的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在三棱柱ABC-A1B1C1中,棱AC的中点为D
(1)求证:B1C∥平面A1BD;
(2)若平面ABC⊥平面ABB1A1,AA1=AB=$\sqrt{2}$BC=$\sqrt{2}$AC=2,∠A1AB=60°,求三棱锥D-A1BC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系中,两个动圆均过点A(1,0)且与直线l:x=-1相切,圆心分别为C1、C2,若动点M满足2$\overrightarrow{C_2M}$=$\overrightarrow{C_2C_1}$+$\overrightarrow{C_2A}$,则M的轨迹方程为y2=2x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,AB=2AC=2,AD是BC边上的中线,记∠CAD=α,∠BAD=β.
(1)求sinα:sinβ;
(2)若tanα=sin∠BAC,求BC.

查看答案和解析>>

同步练习册答案