精英家教网 > 高中数学 > 题目详情
已知点P为椭圆C:
x2
4
+
y2
3
=1上动点,F1,F2分别是椭圆C的焦点,则|PF1|-|PF2|的最大值为(  )
分析:根据椭圆的几何性质,可得当P与椭圆的右顶点重合时|PF1|的取得最大值且|PF2|取得最小值,故此时|PF1|-|PF2|取得最大值2,得到本题答案.
解答:解:∵点P为椭圆C:
x2
4
+
y2
3
=1上动点,
∴a=2,b=
3
,可得c=
a2-b2
=1
运动点P可得|PF1|∈[a-c,a+c],即|PF1|∈[1,3]
当P与椭圆的左顶点重合时,|PF1|的最小值为1;当P与椭圆的右顶点重合时,
|PF1|的最大值为3
同理,P与椭圆的左顶点重合时,|PF2|的最大值为3;当P与椭圆的右顶点重合时,|PF2|的最小值为1
∴当P与椭圆的右顶点重合时,|PF1|-|PF2|达到最大值,最大值为3-1=2.
故选:A
点评:本题给出椭圆上动点P,求它与左、右焦点距离之差的最大值,着重考查了椭圆的标准方程与简单几何性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知点P为椭圆
x2
25
+
y2
9
=1
在第一象限内的任意一点,过椭圆的右顶点A和上顶点B分别作与y轴和x轴的平行线交于C,过P引BC、AC的平行线交AC于N,交BC于M,交AB于D、E,矩形PMCN的面积是S1,三角形PDE的面积是S2,则S1:S2=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心为原点O,点F(1,0)是它的一个焦点,直线l过点F与椭圆C交于A,B两点,当直线l垂直于x轴时,
OA
OB
=
1
2

(I)求椭圆C的方程;
(II)已知点P为椭圆的上顶点,且存在实数t使
PA
+
PB
=t
PF
成立,求实数t的值和直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上,F1、F2分别为椭圆C的左、右焦点,满足|PF1|=6-|PF2|,且椭圆C的离心率为
5
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点Q(1,0)且不与x轴垂直的直线l与椭圆C相交于两个不同点M、N,在x轴上是否存在定点G,使得
GM
GN
为定值.若存在,求出所有满足这种条件的点G的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心为原点O,点F2(1,0)是它的一个焦点,直线l过点F2与椭圆C交于A,B两点,当直线l垂直于x轴时,△OAB的面积S△OAB=
2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点P在椭圆C上,F1,F2是椭圆的两个焦点,∠F1PF2=60°,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•鹰潭一模)已知点P是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上的点,椭圆短轴长为2,F1,F2是椭圆的两个焦点,|OP|=
10
2
PF1
PF2
=
1
2
(点O为坐标原点).
(Ⅰ)求椭圆C的方程及离心率;
(Ⅱ)直线y=x与椭圆C在第一象限交于A点,若椭圆C上两点M、N使
OM
+
ON
OA
,λ∈(0,2)求△OMN面积的最大值.

查看答案和解析>>

同步练习册答案