精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱锥中,平面,点分别为的中点.

(1)求证:平面

(2)是线段上的点,且平面.

①确定点的位置;

②求直线与平面所成角的正弦值.

【答案】(1)证明见解析;(2)①为靠近的一个三等分点;②.

【解析】

1)由已知条件可证,即可证明结论;

2)①连结,交,则的重心,根据线面平行的性质定理,可证,结合重心的性质,即可确定点位置;

②作,有,从而有平面,得到是直线与平面所成的角,解直角,即可得出结论.

(1)中点,

平面平面

平面.

(2)①连结,交,则的重心,

平面平面

平面平面

为靠近的一个三等分点.

②作,则平面

是直线与平面所成的角,

直线与平面所成角的正弦值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,其焦点到准线的距离为2,直线与抛物线交于两点,过分别作抛物线的切线交于点.

(Ⅰ)求的值;

(Ⅱ)若,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆是圆M内一个定点,P是圆上任意一点,线段PN的垂直平分线l和半径MP相交于点Q,当点P在圆M上运动时,点Q的轨迹为曲线E.

1)求曲线E的方程;

2)已知抛物线上,是否存在直线m与曲线E交于GH,使得GH中点F落在直线y2x上,并且与抛物线相切,若直线m存在,求出直线m的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱中,平面.

(1)证明:.

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的顶点边上的中线所在直线方程为的角平分线所在直线方程为

(I)求顶点的坐标;

(II)求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型超市公司计划在市新城区开设分店,为确定在新城区开设分店的个数,该公司对该市已开设分店的其他区的数据统计后得到下列信息(其中表示在该区开设分店的个数,表示这个分店的年收入之和):

分店个数(个)

2

3

4

5

6

年收入(万元)

250

300

400

450

600

(Ⅰ)该公司经过初步判断,可用线性回归模型拟合的关系,求关于的回归方程;

(Ⅱ)假设该公司每年在新城区获得的总利润(单位:万元)与之间的关系为,请根据(Ⅰ)中的线性回归方程,估算该公司在新城区开设多少个分店时,才能使新城区每年每个分店的平均利润最大.

参考公式:回归方程中斜率和截距的最小二乘估计公式分别为: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若直线与函数的图象相切,求实数的值;

(2)若存在,使,且,求实数的取值范围;

(3)当时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知点是抛物线上一定点,直线的倾斜角互补,且与抛物线另交于两个不同的点.

(1)求点到其准线的距离;

(2)求证:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的空间几何体中,平面平面都是边长为2的等边三角形,与平面所成的角为60°,且点在平面上的射影落在的平分线上.

(1)求证:平面

(2)求四面体的体积.

查看答案和解析>>

同步练习册答案