【题目】在平面直角坐标系中,以为极点,轴的正半轴为极轴建立的极坐标系中,直线的极坐标方程为,曲线的参数方程为(为参数).
(1)写出直线及曲线的直角坐标方程;
(2)过点且平行于直线的直线与曲线交于,两点,若,求点的轨迹及其直角坐标方程.
【答案】(1)直线的直角坐标方程为,曲线的直角坐标方程为.(2)点的轨迹是椭圆夹在平行直线之间的两段弧.
【解析】
(1)利用极坐标与直角坐标方程的互化,直接写出直线的普通方程,消去参数可得曲线的直角坐标方程;
(2)设点,以及平行于直线的直线参数方程,直线与曲线联立方程组,通过,即可求点轨迹的直角坐标方程.通过两个交点推出轨迹方程的范围.
解:(1)直线的极坐标方程为,
直线的倾斜角为,且经过原点,
故直线的直角坐标方程为,
曲线的参数方程为为参数),
曲线的直角坐标方程为.
(2)设点,及过点的直线为,
由直线与曲线相交可得:,
,
,即:,
点轨迹的直角坐标方程,表示一椭圆.
取代入得:
由解得
故点的轨迹是椭圆夹在平行直线之间的两段弧.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为
(1)求圆的圆心到直线的距离;
(2)己知,若直线与圆交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图抛物线的焦点为,为抛物线上一点(在轴上方),,点到轴的距离为4.
(1)求抛物线方程及点的坐标;
(2)是否存在轴上的一个点,过点有两条直线,满足,交抛物线于两点.与抛物线相切于点(不为坐标原点),有成立,若存在,求出点的坐标.若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示
(1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司2019年3月份的利润;
(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,两种型号的新型材料可供选择,按规定每种新型材料最多可使用个月,但新材料的不稳定性会导致材料损坏的年限不相同,现对,两种型号的新型材料对应的产品各件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:
使用寿命 材料类型 | 个月 | 个月 | 个月 | 个月 | 总计 |
如果你是甲公司的负责人,你会选择采购哪款新型材料?
参考数据:,.参考公式:回归直线方程为,其中 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如题所示的平面图形中,为矩形,,为线段的中点,点是以为圆心,为直径的半圆上任一点(不与重合),以为折痕,将半圆所在平面折起,使平面平面,如图2,为线段的中点.
(1)证明:.
(2)若锐二面角的大小为,求二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂打算设计一种容积为2m3的密闭容器用于贮藏原料,容器的形状是如图所示的直四棱柱,其底面是边长为x米的正方形,假设该容器的底面及侧壁的厚度均可忽略不计.
(1)请你确定x的值,使得该容器的外表面积最小;
(2)若该容器全部由某种每平方米价格为100元的材料做成,且制作该容器仅需将购置的材料做成符合需要的矩形,这些矩形即是直四棱柱形容器的上下底面和侧面(假设这一过程中产生的费用和材料损耗可忽略不计),再将这些上下底面和侧面的边缘进行焊接即可做成该容器,焊接费用是每米500元,试确定x的值,使得生产每个该种容器的成本(即原料购置成本+焊接费用)最低.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1所示,在等腰梯形ABCD中,,,垂足为E,,将沿EC折起到的位置,如图2所示,使平面平面ABCE.
(1)连结BE,证明:平面;
(2)在棱上是否存在点G,使得平面,若存在,直接指出点G的位置不必说明理由,并求出此时三棱锥的体积;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中曲线的参数方程为(为参数),以为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(1)求曲线的普通方程以及直线的直角坐标方程;
(2)将曲线向左平移2个单位,再将曲线上的所有点的横坐标缩短为原来的,得到曲线,求曲线上的点到直线的距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com