精英家教网 > 高中数学 > 题目详情

【题目】某公司的新能源产品上市后在国内外同时销售,已知第一批产品上市销售40天内全部售完,该公司对这批产品上市后的国内外市场销售情况进行了跟踪调查,如图所示,其中图①中的折线表示的是国外市场的日销售量与上市时间的关系;图②中的抛物线表示的是国内市场的日销售量与上市时间的关系;下表表示的是产品广告费用、产品成本、产品销售价格与上市时间的关系.

(1)分别写出国外市场的日销售量、国内市场的日销售量与产品上市时间的函数关系式;

(2)产品上市后的哪几天,这家公司的日销售利润超过260万元?

(日销售利润=(单件产品销售价-单件产品成本)×日销售量-当天广告费用,)

【答案】(1)见解析;(2)新能源产品上市后,在第16,17,18,19,20共5天,这家公司的日销售利润超过260万元.

【解析】

(1)由图中在两段上均为一次函数,图国内市场的日销售量g(t)是二次函数,利用选定系数法易求出国外市场的日销售量f(t)、国内市场的日销售量g(t)与第一批产品A上市时间t的关系式;

(2)由表中产品A的销售利润h(t)与上市时间t的关系,我们可求出家公司的日销售利润为F(t)的解析式,分析函数的单调性后,结合函数的单调性可得第一批产品A上市后的哪几天,这家公司的日销售利润超过260万元.

(1)由图①的折线图可得:

,

同理图②表示的是二次函数一部分,可得:

.

(2)设这家公司的日销售利润为F(t),则国内外日销售总量为

由表可知:

①当时,

故F(t)在(0,20]上单调递增,且

②当时,令,无解;

③当时,.

答:新能源产品上市后,在第16,17,18,19,20共5天,这家公司的日销售利润超过260万元

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若关于的方程有实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某疾病控制中心为了研究某种病毒的抗体,将这种病毒感染源放人含40个小白鼠的封闭容器中进行感染,未感染病毒的小白鼠说明已经产生了抗体,已知小白鼠对这种病毒产生抗体的概率为.现对40个小白鼠进行抽血化验,为了检验出所有产生该种病毒抗体的小白鼠,设计了下面的检测方案:按,且40的约数)个小白鼠平均分组,并将抽到的同组的个小白鼠每个抽取的一半血混合在一起化验,若发现该病毒抗体,则对该组的个小白鼠抽取的另一半血逐一化验,记为某组中含有抗体的小白鼠的个数.

1)若,求的分布列和数学期望.

2)为减少化验次数的期望值,试确定的大小.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生活中万事万物都是有关联的,所有直线中有关联直线,所有点中也有相关点,现在定义:平面内如果两点都在函数的图像上,而且满足两点关于原点对称,则称点对()是函数的“相关对称点对”(注明:点对()与()看成同一个“相关对称点对”).已知函数,则这个函数的“相关对称点对”有(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上10,得到一组新数据,则所得新数据的平均数和方差分别是(

A.12.8 3.6 B.2.8 13.6 C.12.8 13.6 D.13.6 12.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面ABCD为矩形,ACBD交于点OPA平面ABCD,点E在线段PC上,PC平面BDE.

1)求证:BD平面PAC

2)若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱中,平面DAC的中点

求证:平面

求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直线和直线,射线的一个法向量为,点为坐标原点,,点分别是直线上的动点,直线之间的距离为2于点于点

1)若,求的值;

2)若,求的最大值;

3)若,求的最小值.

查看答案和解析>>

同步练习册答案