精英家教网 > 高中数学 > 题目详情

【题目】已知函数yf(x)的定义域为R,x<0f(x)>1,且对任意的实数xyR,等式f(x)f(y)=f(xy)恒成立.若数列{an}满足a1f(0),f(an1)=a2 017的值为(  )

A. 4 033 B. 3 029 C. 2 249 D. 2 209

【答案】A

【解析】

因为是选择题,可用特殊函数来研究,根据条件,底数小于1的指数函数符合题意,可令f(x)=(n,从而很容易地求得则a1=f(0)=1,再由f(an+1)= (nN*),得到an+1=an+2,由等差数列的定义求得结果.

根据题意,不妨设f(x)=(n,则a1=f(0)=1,

f(an+1)= (nN*),(nN*),

an+1=an+2,

∴数列{an}是以1为首项,以2为公差的等差数列

an=2n﹣1

a2017=4034-1=4033

故答案为:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.

(1)排成前后两排,前排3人,后排4人;(2)全体站成一排,甲不站排头也不站排尾;

(3)全体站成一排,女生必须站在一起;(4)全体站成一排,男生互不相邻.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的子集,若,则称为一个“理想配集”,那么符合此条件的“理想配集”的个数是________.(规定是两个不同的“理想配集”)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有如下性质:如果常数,那么该函数在上是减函数,在是增函数,其图像如图所示.

(1)已知,利用上述性质,求函数的单调区间和值域;

(2)对于(1)中的函数和函数,若对任意,总存在,使得成立,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数在区间上的值域;

(2)当时,试讨论函数的单调性;

(3)若对任意,存在,使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=﹣3x2+a(6﹣a)x+6.
(Ⅰ)解关于a的不等式f(1)>0;
(Ⅱ)若不等式f(x)>b的解集为(﹣1,3),求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们学习了二元基本不等式:设,,,当且仅当时,等号成立利用基本不等式可以证明不等式,也可以利用“和定积最大,积定和最小”求最值.

(1)对于三元基本不等式请猜想:设 当且仅当时,等号成立(把横线补全).

(2)利用(1)猜想的三元基本不等式证明:

求证:

(3)利用(1)猜想的三元基本不等式求最值:

的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)为增函数,当xyR时,恒有fxy)=fx)+fy

(1)求证:fx)是奇函数.

(2)是否存在m,使,对于任意x∈[12]恒成立?若存在,求出实数m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:

(1)画出数据对应的散点图;

(2)求线性回归方程,并在散点图中加上回归直线;

(3)据(2)的结果估计当房屋面积为时的销售价格.

查看答案和解析>>

同步练习册答案