A. | -$\frac{π}{4}$ | B. | -$\frac{3π}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{3π}{4}$ |
分析 先根据题设条件,利用正切的两角和公式求得tanα的值,进而利用tan(2α-β)=tan(α-β+α)根据两角和公式求得tan(2α-β)的值,进而根据α和β的范围确定2α-β的值.
解答 解:∵tan(α-β)=$\frac{1}{2}$,tanβ=-$\frac{1}{7}$,
∴tanα=tan(α-β+β)=$\frac{tan(α-β)+tanβ}{1-tan(α-β)tanβ}$=$\frac{1}{3}$,
∴tan(2α-β)=tan(α-β+α)=$\frac{tan(α-β)+tanα}{1-tan(α-β)tanα}$=1,
∵tanα=$\frac{1}{3}$<$\frac{\sqrt{3}}{3}$,tanβ=-$\frac{1}{7}$>-$\frac{\sqrt{3}}{3}$,α,β∈(0,π)
∴0<α<$\frac{π}{6}$,$\frac{5π}{6}$<β<π,
∴-π<2α-β<-$\frac{π}{2}$,
∴2α-β=-$\frac{3π}{4}$.
故选:B.
点评 本题主要考查了两角和公式的正切函数.解题的关键是通过α和β的范围确定2α-β的值,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0.43 | B. | 0.27 | C. | 0.3 | D. | 0.7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{4}{5}$ | B. | $\frac{1}{2}$ | C. | $\frac{8}{5}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若l⊥α.m⊥α,则l∥m | |
B. | 若m?β,m⊥l,n是l在β内的射影,则m⊥n | |
C. | 若m?α,n?α,m∥n,则n∥α | |
D. | 若α⊥γ,β⊥γ,则α∥β. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com