精英家教网 > 高中数学 > 题目详情

【题目】定义:在数列{an}中,若an2﹣an12=p,(n≥2,n∈N* , p为常数),则称{an}为“等方差数列”,下列是对“等方差数列”的有关判断:
①若{an}是“等方差数列”,则数列{ }是等差数列;
②{(﹣2)n}是“等方差数列”;
③若{an}是“等方差数列”,则数列{akn}(k∈N* , k为常数)也是“等方差数列”;
④若{an}既是“等方差数列”,又是等差数列,则该数列是常数数列.
其中正确命题的个数为( )
A.1
B.2
C.3
D.4

【答案】B
【解析】解:根据题意,依次分析四个判断:①、若{an}是“等方差数列”,假设an= ,则 = ,不是等差数列,则①错误;②:对数列{(﹣2)n}有an2﹣an12=[(﹣2)n]2﹣[(﹣2)n1]2=4n﹣4n1不是常数,所以②错误③:对数列{akn}有akn2﹣akn12=(akn2﹣akn12)+(akn12﹣akn22)+…+(aknk+12﹣aknk2)=kp,而k,p均为常数,所以数列{akn}也是“等方差数列”,所以③正确④:设数列{an}首项a1,公差为d则有a2=a1+d,a3=a1+2d,所以有(a1+d)2﹣a12=p,且(a1+2d)2﹣(a1+d)2=p,所以得d2+2a1d=p,3d2+2a1d=p,上两式相减得d=0,所以此数列为常数数列,所以④正确.

有2个正确;

所以答案是:B.

【考点精析】通过灵活运用数列的通项公式,掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为对本公司的160名员工的身体状况进行调查,先将员工随机编号为1,2,3,…,159,160,采用系统抽样的方法(等间距地抽取,每段抽取一个个体)将抽取的一个样本.已知抽取的员工中最小的两个编号为5,21,那么抽取的员工中,最大的编号应该是( )
A.141
B.142
C.149
D.150

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣alnx(a∈R)
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}中,已知a1=2,a4=16.
(1)求数列{an}的通项公式an
(2)若a3 , a5分别是等差数列{bn}的第4项和第16项,求数列{bn}的通项公式及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a1+2a2+3a3+…+nan= (n≥1,n∈Z)
(1)求数列{an}的通项公式an
(2)求数列{n2an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(n)=(1+ n﹣n,其中n为正整数.
(1)求f(1),f(2),f(3)的值;
(2)猜想满足不等式f(n)<0的正整数n的范围,并用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果圆(x﹣a)2+(y﹣a)2=8上总存在到原点的距离为 的点,则实数a的取值范围是( )
A.(﹣3,﹣1)∪(1,3)
B.(﹣3,3)
C.[﹣1,1]
D.[﹣3,﹣1]∪[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的前n项和为Sn , 若{an}和 都是等差数列,且公差相等.
(1)求数列{an}的通项公式;
(2)令bn= ,cn=bnbn+1 , 求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个树形图依据下列规律不断生长:1个空心圆点到下一行仅生长出1个实心圆点,1个实心圆点到下一行生长出1个实心圆点和1个空心圆点.则第11行的实心圆点的个数是

查看答案和解析>>

同步练习册答案