【题目】关于函数f(x)=4sin(2x )(x∈R),有下列命题: ①y=f(x)的表达式可改写为y=4cos(2x﹣ );
②y=f(x)是以2π为最小正周期的周期函数;
③y=f(x)的图象关于点 对称;
④y=f(x)的图象关于直线x=﹣ 对称.
其中正确的命题的序号是 .
【答案】①③
【解析】解:∵f (x)=4sin(2x+ )=4cos( )=4cos(﹣2x+ )=4cos(2x﹣ ),故①正确; ∵T= ,故②不正确;
令x=﹣ 代入f (x)=4sin(2x+ )得到f(﹣ )=4sin( + )=0,故y=f (x)的图象关于点 对称,③正确④不正确;
所以答案是:①③.
【考点精析】本题主要考查了函数y=Asin(ωx+φ)的图象变换的相关知识点,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】某研究所计划利用宇宙飞船进行新产品搭载试验,计划搭载若干件新产品A,B,该研究所要根据产品的研制成本、产品重量、搭载试验费用和预计收益来决定具体安排,通过调查得到的有关数据如表:
每件A产品 | 每件B产品 | |
研制成本、搭载试验费用之和(万元) | 20 | 30 |
产品重量(千克) | 10 | 5 |
预计收益(万元) | 80 | 60 |
已知研制成本、搭载试验费用之和的最大资金为300万元,最大搭载重量为110千克,则如何安排这两种产品进行搭载,才能使总预计收益达到最大,求最大预计收益是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足an+1=2an﹣1(n∈N+),a1=2.
(1)求证:数列{an﹣1}为等比数列,并求数列{an}的通项公式;
(2)求数列{nan}的前n项和Sn(n∈N+).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos2(x+ ),g(x)=1+ sin2x.
(1)设x=x0是函数y=f(x)图象的一条对称轴,求g(x0)的值.
(2)设函数h(x)=f(x)+g(x),若不等式|h(x)﹣m|≤1在[﹣ , ]上恒成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com